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Abstract 

In this work, four mainstream machine learning (ML) techniques are used to evaluate the bulk porosity and static 
elastic modulus of weathered Yungang Grottoes sandstone. Datasets are gathered from the experiments, which 
includes 432 groups effective experimental data including 8 inputs features. bulk porosity and static elastic modulus 
were considered as outputs to determine the weathering degrees of Yungang Grottoes sandstone. The 4 performance 
criteria were used to evaluate the ML models. Results demonstrate that the Artificial Neural Network (ANN) 
is the best-fitted models for estimating the bulk porosity and static elastic modulus compared to Multiple Linear 
Regression (MLR), Support Vector Regression (SVR), Gaussian Process Regression (GPR). The accuracy of the trained 
model for static elastic modulus is slightly higher than that of bulk porosity. The GPR and ANN model can accurately 
predict the bulk porosity and static elastic modulus in training stages. The ANN with multi-hidden layers developed 
is competent with high degree of precision and generalization ability for bulk porosity and static elastic modulus 
compared to other selected regression-based ML models (MLR, SVR, and GPR). The coefficient of determinations 
of ANN in the range of (0.9537–0.9641) during the testing stages is more stable and higher than that of (0.8883–
0.9453) other built ML models. The prediction efficiency of pretrained ANN model was well adjusted for the actual 
and forecast datasets at the training and testing stages, and the error range was no more than 0.7% and 0.15 GPa 
at both stages of prediction for bulk porosity and static elastic modulus respectively. And the ANN based static 
elastic modulus prediction model’s error proportions significantly decreased and were confined to a modest range 
between + 10% and − 10%. The proposed surrogate models are valid for the bulk porosity ranging from 7 to 14% 
and the static elastic modulus ranging from 0.7 to 1.4 Gpa, which can be utilized for the accurate and fast prediction 
of the weathering degrees of Yungang Grottoes sandstone.
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Introduction
Stone cultural heritages with extremely high historical 
and cultural value have a long history and are distributed 
around the world [1]. Grotto like stone heritages is the 
most representative type [2–4]. Many immovable stone 
heritages have undergone thousands of years of natural or 
artificial weathering, resulting in significant deterioration 
of the material properties on its surface or internal [5, 6]. 
The weathering degree of large exposed stone heritages, 
is an important indicator for their preservation and a 
significant parameter that should be determined before 
the heritages are restored [6–8]. Many researchers have 
carried out restoration and protection work on it, but 
before that, it is necessary to evaluate or quantify the 
weathering degrees of stone cultural heritages.

Weathering diseases are caused by multiple fac-
tors coupled and long-term effects, mainly induced by 
freeze–thaw [9], chemical reaction from pollutants or 
precipitations [10, 11], temperature [12], moisture [13] 
and coupling effect of this factors. In general, weath-
ering diseases can be classified into different types. 
In 1984, Huang and his colleagues [14] first classi-
fied weathering diseases into four types based on the 

weathering characteristics of some famous sandstone 
grottoes in China (e.g., Yungang Grottoes, Longmen 
Grottoes, Dazu Caves, Leshan Giant Buddha, etc.): 
powdery weathering, sheet-like weathering, strip-like 
weathering, and plate-like weathering. Other studies 
classified weathering types of sandstone grottoes from 
different perspectives [15–17], but described weath-
ering characteristics were consistent basically. Four 
types typical weathering diseases are as shown in Fig. 1. 
The products formed by powdery weathering [18] 
are mostly white powdery or flocculent as shown in 
Fig. 1a, mainly occurring on the surface of medium to 
coarse-grained sandstone with accumulations formed. 
The structure is extreme loose and the bonding ability 
between powders is poor (or disappeared). The prod-
ucts formed by sheet-like weathering [19] are mostly 
thin sheets as shown in Fig.  1b, and the thickness of 
the thin sheets are usually determined by the particle 
size of the sandstone in the rock layer. The thickness of 
the thin sheets formed by coarse-grained sandstone is 
generally 3–4 mm, and the thickness of the thin sheets 
in fine-grained sandstone is generally 0.5–1 mm. Strip-
like weathering, also known as cave-like weathering, is 

(a)Powdery weathering (b)Sheet-like weathering

(c)Strip-like weathering (d)Plate-like weathering
Fig.1 Typical weathering diseases of sandstone grottoes
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parallel to the sandstone bedding in a strip-like [20] or 
cave-like way as shown in Fig.  1c. Strip-like weather-
ing usually occurs in rock layers containing mud and 
siltstone, as well as medium to coarse-grained sand-
stone. The characteristic of plate-like weathering is that 
its products form plate-like peeling [21] as shown in 
Fig. 1d, generally parallel to the wall surface. The thick-
ness of the plate is generally 2–4 cm, mainly distributed 
below 2 m from the ground.

The above four rough weathering classifications 
are the most common and mainly suitable for 
weathering in Yungang Grottoes. And there are more 
detailed weathering classifications for stone heritage 
(see ICOMOS-ISCS: Illustrated glossary on stone 
deterioration patterns [22]). Actually, the climate 
conditions, sandstone lithology, and architectural forms 
(such as churches) of other regions’ sandstone cultural 
heritages may not be same or similar. André and her 
colleagues [23, 24] propose that external factors to 
control the weatherability of sandstone monuments and 
churches, suah as air pollution, the impact of wetting–
drying cycles, frost action and salt concentration. And 
Oguchi et  al. [7] interpret 8 patterns of disintegration 
of sandstone heritages due to weathering: cracking and 
disintegration, crumbling, scaling, surface pitting, thick 
scaling, delamination, cracking, and expansive dilatation 
patterns. For more detailed surface degradation of 
sandstone heritage, 12 types of deterioration are 
described and studied by Zhang et  al. [25], including 
dust deposits, salt crystallization, black smudges of 
smoke, yellow stains, Residual resin, biological growth, 
cement-blocks, paint stain, grease, scrawl, water spots, 
plaster stain. Mammoliti et al. [26] assess various forms 
of weathering from a sandstone column of monument 
via a non-destructive approach, such as discolouration, 
scaling and loss of stone volume. In fact, there are many 
effective methods for evaluating the weathering degrees 
of grotto heritages [27] include high-density electrical 
methods, spectroscopic techniques, hardness tester, and 
ultrasonic methods, etc. [28–33]. The indicators obtained 
by these non-destructive or micro-destructive methods 
can define the degree of weathering of the sandstone, 
but these indicators can not describe the properties 
of the sandstone (e.g., elastic modulus, pore structure, 
etc.) directly. The properties of the sandstone itself 
are generally tested by cumbersome (non-portable) or 
destructive methods, such as using uniaxial compression 
test (UCT) to determine the elastic modulus of the 
sandstone, and using nuclear magnetic resonance (NMR) 
or mercury intrusion porosimetry (MIP) techniques to 
determine the pore parameters of the sandstone. The 
methods mentioned are generally difficult to implement 
at grottoes cultural heritages in-situ. Therefore, it is 

necessary to propose a nondestructive and ready-to-use 
method to obtain the bulk porosity and elastic modulus 
approximately for determining weathering degree of 
grotto sandstone.

To accurately evaluate weathered grottoes sandstone, 
it is critical to use an accurate and efficient model for 
forecasting the typical micro and macro indicators, 
such as bulk porosity and static elastic modulus. There 
is no computational model available in the previous 
studies to forecast the bulk porosity and static elastic 
modulus of weathered grottoes sandstone. Very limited 
analytical models (theoretical models) are available in 
the previous studies. The computational cost is very high 
and the efficiency is intolerable slow by using the refined 
numerical models. The artificial intelligence (AI) or 
machine learning (ML) techniques may give researchers 
a surrogate model to estimate bulk porosity and static 
elastic modulus to determine weathering degree non-
destructively and quickly, allowing them to plan less 
experimental work with a higher level of accuracy. In the 
past 2 decades, ML based surrogate models have been 
investigated in stone cultural heritage conservation for 
the disease features detection [34–37]. Bewes et al. [38] 
predicted sex from skeletal remains using deep learning 
(DL) model; Cintas et  al. [39] used the pottery profile 
classification method. There are also damage or disease 
features assessment in the limited components of historic 
monuments [40, 41]. Hatır et.al [42–45] use vision-
based DL methods to classify the types of deterioration 
with high accuracy. Currently, many studies categorize 
weathering of grottoes without quantifying a specific 
indicator. But to predict and evaluate weathered grottoes 
sandstone accurately, it is critical to use an accurate 
and efficient model for forecasting the typical micro 
indicators (e,g, bulk porosity and pore size distribution, 
etc.). There is no computational model available in the 
previous studies to forecast the pore parameters and 
modulus information of weathered grottoes sandstone. 
In addition, the human errors that experts make in 
weathering recognition will accelerate the weathering 
process in building stones. There are also some factors 
that can lead to misjudgment. Taking the acoustic 
emission detection of stone cultural heritage as an 
example, if there are not enough testing frequencies, 
the values of compression wave velocity will undergo 
significant variability. This variability may be attributed 
to the inherent heterogeneity of the sandstone itself and 
potential inaccuracies in portable device, etc. Thus, it is 
necessary to propose a surrogate model for quickly and 
non-destructively obtaining indicators that can directly 
describe the weathering of sandstone in grottoes (e.g., 
bulk porosity and static elastic modulus, etc.).
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Although some studies have conducted predictions 
on the degree of weathering of grotto sandstone, less 
input features are used such as compression wave 
velocity, hardness, etc. But that using single and limited 
detection approaches is difficult to consider multiple 
weathering factors (e.g., acid, alkali, salt and freeze–
thaw, etc.). Meanwhile, the types of machine learning 
based surrogate models used are relatively limited and 
monotonous. There is no comparison of performance 
for predictions between different ML models. Hence, 
as a supplement, the sandstone from the Yungang 
Grottoes are selected as typical object, and the feasibility 
and reliability of machine learning models including 
GPR, SVR, ANN and MLR in predicting bulk porosity 
and static elastic modulus of weathered sandstone 
were studied in this work. Firstly, simulation tests on 
the weathering of grotto sandstone were carried out 
under acid, alkali, salt and freeze–thaw conditions in 
Sect.  “Dataset description and analysis of weathering 
experiments of sandstone”. An experimental database 
containing 432 unique records of weathering tests, as 
well as 8 characteristics, was gathered and processed 
for this purpose. Then, the framework of the data 
processing approach and machine learning modelling 
technique used in this study has been described in 
Sect.  “Experimental database collection and machine 
learning approach”. The prediction performance of some 
typical ML models have been evaluated and analysed in 
Sect. “Predicted performances and comparative analyses”. 
This study can provide reference for the prediction 
and evaluation of weathering degrees of stone cultural 
heritages.

Dataset description and analysis of weathering 
experiments of sandstone
Characterization of weathered sandstone
The stratigraphic structure of the area where the Yungang 
Grottoes are located is relatively simple. It belongs to 
the upper Middle Jurassic formations of the Mesozoic 
era and the middle to upper Quaternary formations. 
These include the Middle Pleistocene (residual-alluvial), 
Upper Pleistocene (alluvial-pluvial), Holocene (alluvial-
colluvial), and the Middle Jurassic Yungang Formation. 
The grotto area is a typical continental semi-arid climate, 
and average temperature of the coldest month and the 
hottest month, annual average temperature and annual 
average precipitation are −  13.3 ℃, 23.1 ℃, 9.1 ℃ and 
423.8  mm. The rock samples used in this study were 
taken from the exposed strata in the eastern part of the 
Yungang Grottoes area, which date back to the same 
period as the Yungang Grottoes. And Yungang grotto 
has been subjected to air pollution since the last century, 
field investigations have indicated that acid gases, 

particularly sulfur dioxide  (SO2) or nitrogen dioxide 
 (NO2), have accumulated on the surface of the sculptures 
[10]. Especially, the concentration of  SO2 continued to 
rise, reaching to a historical high value of 767.01 μg/m3 
in 1991 (the limitation in Chinese national standards is 
20  μg/m3). These gases will be formed into acid or salt 
solutions when there exists water in the environment, 
thus continuing to cause deterioration of sandstone. Due 
to the complex composition and structure of sandstone, 
there may exist significant differences in physical 
parameters between samples taken from the same rock. 
To ensure that the final samples are minimally affected 
by the surface weathering layer, the sampling location 
should be at least 20  cm away from the surface of the 
rock (weathering layer is about within 5 cm).

In order to ensure the reliability of the experimental 
results, it is necessary to screen sandstone samples with 
relatively small differences in physical properties using 
velocity of compression wave as screening criteria, and 
also to compare the properties of sandstone before and 
after simulated weathering. Finally, 156 samples with 
relatively small differences in physical parameters were 
selected from the numerous cut sandstones as experi-
mental samples. The rock samples were made into cubic 
blocks with a size of 5 × 5 × 5  cm3 using cutting machine. 
Destructive and non-destructive tests of weathered sand-
stone were carried out. In this tests, deionized water was 
used for the freeze–thaw cycle, and the solutions of acid, 
alkali, and salt are sulfuric acid (H2SO4), sodium hydrox-
ide (NaOH) and sodium sulfate (NaSO4) respectively. To 
accelerate the weathering rate of sandstone in each simu-
lated weathering cycles, the pH of H2SO4 solution is con-
firmed as 1 and pH of NaOH solution is confirmed as 14. 
The saturated NaSO4 solution are also used in this study. 
It should be noted that, the pH of groundwater in Yun-
gang Grottoes was 6–8; the TDS was lower than 3  g/L 
and the concentration of SO₄2⁻ was no more than 1.5 g/L. 
Hence, pH = 1 and pH = 14 is not the actual situation, 
which indicate that extreme acidic and alkaline solution 
cannot reflect the actual corrosion of sandstone in Yun-
gang Grottoes very accurately. In addition to the faster 
corrosion rate compared to weak acids (pH = 3–6), the 
specific reasons for selecting strong acids in this experi-
ment are: (a) the greater corrosion depth of extreme acid 
solution allows for the easy formation of a weathering 
layer extending from the surface to a certain depth within 
the interior; (b) extreme acid solution can rapidly dis-
solve minerals, leading to the loosening of the sandstone 
structure and even its disintegration. The specific infor-
mation are shown in Table 1.

The weathering of the Yungang Grottoes is the result 
of long-term and random processes. Simulating weather-
ing under real environmental conditions would require 
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extremely high costs. The purpose of the accelerated 
weathering experiments under various environmental 
conditions in this study is to rapidly replicate the current 
weathering state of the Yungang Grottoes as closely as 
possible. Although the results may not precisely simulate 
the actual weathering processes, it can produce sand-
stone samples with different types and apparent gradients 
of weathering. Such samples, exhibiting distinct weather-
ing gradients, are crucial for enhancing the generaliza-
tion capability and performance of subsequent machine 
learning models.

Meanwhile, The detailed procedure freeze–thaw and 
solution soaking cycles are as follows respectively:

Firstly, the procedure for freeze–thaw cycle is 
introduced: (a)All samples are dried to a constant weight 
in an oven at 105 °C, then placed in a sealed container to 
cool down to room temperature. (b) With the exception 
of the unweathered sandstone in the control group (0 
cycles), 39 samples undergo vacuum saturation. The 
specific steps are as follows: place the samples in a 
desiccator filled with distilled water (ensuring that the 
samples are fully submerged); seal the container and 
connect the vacuum pump to evacuate the air from the 
desiccator; after 4  h of evacuation, allow the samples 
to remain in distilled water at atmospheric pressure for 
an additional 4  h. (c) Con·sidering that the minimum 
temperature in the Yungang area may exceed −  20℃, 
the minimum temperature for the freeze–thaw cycle in 

our experiment is −  20℃, and the thawing temperature 
at 20  °C, with both freezing and thawing phases lasting 
4 h each. The freeze–thaw cycle process for the saturated 
sandstone samples is as follows: place the samples in 
a refrigerator set to −  20  °C and freeze for 4  h; then, 
thaw them in distilled water for 4  h. Each 8-h period 
constitutes one cycle. After every 5 cycles, all samples are 
dried in an oven at 105  °C for 12 h and then allowed to 
cool to room temperature.

And the procedure for 3 solutions soaking cycles are 
also as follows: (a) Before the cyclic tests for each group, 
all rock samples were placed in an oven and dried at 
105 °C for 12 h. After drying, the samples were cooled to 
room temperature. (b) The 36 sandstone samples from 
each group were then placed into acid, alkali, and salt 
solutions corresponding to their designated numbers 
and soaked for 12  h. During soaking, care was taken to 
avoid contact between samples to ensure full immersion. 
c) After the soaking period, the samples were removed 
and rinsed with deionized water to clean the surface. The 
samples were then placed in an oven and dried at 105 °C 
for 12  h. Upon completion of drying, one acid/alkali/
salt cycle was considered complete. After cooling, the 
samples were placed back into the solution to continue 
the next cycle. It should be noted that the conductivity 
and pH of deionized water used in laboratory are about 
0.06 µS/cm and 6.6 (± 0.2), because it easily absorbs CO₂ 
from the air due to the high purity of deionized water, 
and trace amounts of carbonic acid are formed.

Two important indicators for describing sandstone 
weathering, namely, uniaxial compressive strength test 
and nuclear magnetic resonance were selected to deter-
mine the values of the bulk porosity and static elastic 
modulus in every weathering cycles. The bulk porosity 
(total bulk porosity of the sample) is calculated by using 
accumulated T2 spectra. The static elastic modulus can 
be measured through uniaxial compression tests and is 

Table 1 Information of solutions

Solution Molecular 
formula

Concentration 
(mol/L)

pH Temperature 
(℃)

Sulfuric acid H2SO4 0.05 1 20

Sodium hydroxide NaOH 1 14 20

Sodium sulfate NaSO4 3.35 (saturation) 7.5 20

(a)bulk porosity (b)Static elastic modulus
Fig.2 Determination of the bulk porosity and static elastic modulus (freeze–thaw cycles)
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calculated from the linear portion of the stress–strain 
curve according to the recommendations of the Interna-
tional Society for Rock Mechanics (ISRM) [46]. Figure 2 
shows the determination of the bulk porosity and static 
elastic modulus via T2 spectra curves (milliseconds) and 
stress–strain curves (megapascals-microstrains) respec-
tively. Where, The superscript “C” represents accumu-
lated values of T2 spectra and the red elliptical symbol 
represents the bulk porosities; the colorful dots represent 
the 50% of maximum load and colorful straight lines rep-
resent the slope of a tangent in every cycles in Fig.  2b. 
The specific patterns of change will be explained in the 
next Sect.  “The variation of input features and outputs”. 
X-Ray Fluorescence (XRF), X-ray diffraction (XRD) were 
selected to determine the change trends of chemical ele-
ments and minerals in weathering processes. Meanwhile, 
some portable devices such as, electronic balance, ultra-
sonic emission equipment, magnetic susceptibility meter 
and leeb hardness meter were selected to measure other 
indicators. And some macro and micro detection indica-
tors are obtained.

Considering the physical and chemical properties of 
sandstone will be changed simultaneously subjected 
to complex weathering processes, the compression 
wave velocity (Vp), variation of mass before and after 
weathering (M), magnetic susceptibility (cm), hardness 
of leeb (HRC), the ratio of silicon to aluminum (S-A) 
[47], the ratio of the sum of calcium and potassium to 
aluminum(Ca + K-A) [48], the relative content of kao-
linite (Kln), feldspar (Kfs) are all important parameters 
to consider. The ratio of chemical elements were meas-
ured by XRF, and the ratio of mineral was characterized 
by XRD semi-quantitatively [5]. The equipments’ infor-
mation and key parameters required for testing are as 
follows: (a) The PB4002-S electronic balance is used to 
measure M, with a range of 0.5 g to 4100 g and an accu-
racy of 0.01 g. The mass of the samples is recorded before 
the experiment and after every 5 cycles. (b) The the GTJ-
U200 ultrasonic rebound tester is used to measure Vp, 
with an emission frequency of 50 kHz and a sound time 
measurement accuracy of 0.1 μs. Each opposing surface 
will be measured three times, and the average value is 
taken as the final result. (c) The SW-6210S Leeb hard-
ness tester from Sndway is used to measure HRC, with a 
detection range of 170–960 HLD. (d) The magnetic sus-
ceptibility meter is used to measure the magnetic suscep-
tibility of rock outcrops, rock specimens, or soil samples. 
This experiment uses the KM-7 magnetic susceptibility 
meter is used to measure cm with an operating frequency 
of 10 Hz and a sensitivity of  10–6 SI. (e) The MacroMR12-
110H-GS-HTH nuclear magnetic resonance detecter is 
used to measure the relaxation time spectra of saturated 
rock samples, and the bulk porosities will be obtained 

based on the cumulative relaxation time spectra. (f ) The 
uniaxial compressive strength test is conducted using 
the CTM 9200 electro-hydraulic servo universal testing 
machine, with a maximum load of 200 kN. The mode of 
force control is applied in the experiment and the com-
pression rate is 0.5  MPa/s constantly. The compression 
direction is perpendicular to the bedding plane of the 
sandstone, and after the test, and the force–displace-
ment curves of the actuator are recorded to calculate 
static elastic modulus. Where, the area of surfaces under 
compressive pressure and edge length of all sandstones 
are equal, namely 2.5 ×  103  mm2 and 0.5 ×  102  mm2,which 
can be used to estimate the stress–strain curves of sand-
stones. Actually, the elastic modulus should be final 
determined via strain gauges because the displacement 
values recorded during uniaxial compressive strength 
tests were not measured directly on specimens but were 
actuator values of displacement. Therefore, the stress–
strain curve obtained using the experimental methods 
in this study is not entirely accurate and the curves may 
exhibit some lag (strain is underestimated), indicating 
that the final obtained value of the elastic modulus may 
be overestimated slightly. Although the localized small 
strain in sandstone is not captured, the static elastic 
modulus can be equivalently calculated when considering 
the linear segment of the rapidly increasing load in the 
sandstone. (g) The Niton XL3t GOLDD + handheld XRF 
analyzer is used to effectively characterize the chemical 
element distribution on the surface of the sandstone and 
calculate values of S-A and Ca + K-A. (h) The Smartlab 
X-ray diffractometer is used to measure the relative con-
tent of Kln and Kfs, with an angle range of 10°–90° and 
an angular accuracy of 0.0001. Figure 3 is muti-weather-
ing tests of Yungang sandstone. The changing trends of 
some indicators detected will be mentioned in the next 
subsection.

The variation of input features and outputs
Before making quantitative predictions in machine learn-
ing, it is necessary to explore the variation patterns of 
each input features with the weathering process. In order 
to improve the accuracy of subsequent machine learning, 
we removed obvious outliers caused by improper human 
operation (in the box plot). Figures 4, 5, 6, 7 show a box 
plot of the variation of compression wave velocity, mass 
change, absolute magnetic susceptibility, and leeb hard-
ness with the number of weathering cycles under four 
different weathering conditions. It should be noted that 
Yungang sandstone belongs to medium coarse feldspar-
quartz sandstone, and its main minerals are such as 
quartz, feldspar, calcite, clay minerals and kaolin are all 
diamagnetic minerals. Therefore, the original test results 
of the magnetic susceptibility of Yungang sandstone were 
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negative. Based on Figs. 4, 5, 6, 7, it can be seen that there 
is a strong correlation between the four macroscopic 
non-destructive testing indicators, namely decreasing of 

wave velocity, decreasing of mass, increasing of absolute 
magnetic susceptibility and decreasing of surface hard-
ness. All of which can reflect the degree of weathering of 

(a)Weathering Tests

(b)Weathering indicators detection
Fig.3 Muti-Weathering Tests of Yungang Sandstone

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 4 Box plot for Variation of  Vp of different weathered sandstone
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sandstone. However, experimental measured data may 
lead to some reverse trend, such as in freeze–thaw cycles 
and alkaline weathering conditions.

Figure  8 and Table  2 show the variations of chemi-
cal elements’ content and minerals diffraction spectra 
under four different weathering conditions respectively. 

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 5 Box plot for Variation of M of different weathered sandstone

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 6 Box plot for Variation of |cm| of different weathered sandstone

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 7 Box plot for Variation of HRC of different weathered sandstone

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 8 The XRD spectra of minerals under four different weathering conditions
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It can be seen that the main elements in sandstone sam-
ples are Si, Al, Ca, Mg, K, which constitute minerals such 
as quartz, feldspar, calcite. While Fe, Ti, S, and several 
trace elements constitute other metal minerals in sand-
stone. During the freeze–thaw cycles, the Si-content 
is decreased by 3.53% after total 60 cycles, and the Al-
content is increased by 0.83%, resulting in the decreas-
ing the ratio of silicon to aluminum (S-A). Ca-content is 
also decreased by 0.79% and Ca is the main element that 
makes up feldspar, calcite, dolomite, and other metal-
lic minerals in sandstone. The decreasing Ca-content 
indicates a certain degree of decrease in the content of 
above mentioned minerals. After acid cycling test, the 
Ca-content and Fe-content of sandstone are decreased 
by 1.76% and 0.43%, respectively. This is because feld-
spar, calcite, dolomite, metallic iron, and their oxides 
all undergo dissolution reactions when exposed to acid. 
During alkali cycling test, the changes of Al-content and 
Ca-content were large relatively, and decreased by 2.28% 
and 0.36% respectively. The K-content and Mg-content 
are decreased slightly, while the Si-content are decreased 
by 1.73%, which is smaller than other weathered sand-
stone. The changes of other element content were not 
significant because the dissolution reactions with alkaline 
solutions in Yungang sandstone are quartz and feldspar 
mainly. After salt cycling, the content of Si, Al, Ca, Fe, 
K and Ti are significantly decreased, especially the con-
tent of Si, Al, and Ca are decreased by 22.75%, 3.83%, and 
1.22% respectively. The S-content is increased by 15.30%. 
After 5 cycles, the characteristic peaks of feldspar and 
calcite in sandstone have weakened, and the salt solu-
tion migrates along the pore channels of sandstone to 

various internal parts of sandstone. Similar conclusions 
have been obtained in numerous previous studies [2, 9, 
10]. Furthermore, XRD analysis determined that the 
main mineral components of the Yungang sandstone is 
feldspathic quartz sandstone, consisting of quartz, feld-
spar, calcite, kaolinite along with other clay minerals, like 
illite. Table 3 shows the average proportion of main min-
erals in different weathered sandstone. The relative con-
tent of quartz, feldspar, calcite and kaolinite are selected 
for analysis because the content of illite is less than 1.5%, 
while that of other minerals are even less lower (e.g., 

Table 2 Proportion of chemical elements in different weathered sandstone via XRF (%)

Types Cycles Si Al Ca K Fe Mg Ti S

Freeze–thaw 0 45.76 5.94 1.47 1.31 1.98 0.50 0.29 0.01

20 44.41 6.71 1.49 1.57 1.80 0.35 0.21 0.01

40 44.47 6.29 0.76 1.30 2.10 0.40 0.20 0.01

60 42.23 5.77 0.68 1.40 2.27 0.39 0.19 0.01

Acid 0 48.86 4.60 2.24 1.09 1.21 0.44 0.08 0.01

20 47.31 5.85 0.45 1.23 1.29 0.41 0.13 1.53

40 46.89 5.83 0.38 1.11 0.93 0.38 0.12 1.67

60 43.35 5.74 0.48 1.05 0.78 0.34 0.11 2.18

Alkali 0 45.85 5.55 2.35 1.26 1.73 0.58 0.13 0.02

20 45.31 3.12 2.40 1.05 1.54 0.47 0.14 0.01

40 44.77 3.49 2.14 1.03 1.82 0.41 0.15 0.02

60 44.92 3.27 1.99 1.01 1.67 0.32 0.13 0.01

Salt 0 46.71 5.34 2.40 1.24 2.05 0.50 0.20 0.01

3 28.53 1.42 1.57 0.62 1.12 0.61 0.12 13.72

5 25.69 1.64 1.37 0.68 1.31 0.69 0.14 13.55

7 23.96 1.51 1.18 0.61 1.23 0.55 0.15 15.31

Table 3 Average proportion of main minerals in different 
weathered sandstone via XRD (%)

Types Cycles Quartz Feldspar Calcite Kaolinite

Unweathered 0 53.5–61.5 12.3–19.5 4.4–6.6 16.3–19.1

Freeze–thaw 30-S 59.0 11.8 4.1 19.9

30-I 58.2 12.5 3.6 18.1

60-S 59.2 9.4 2.8 23.3

60-I 61.1 9.1 4.1 21.2

Acid 30-S 58.3 11.8 2.9 19.0

30-I 57.9 11.9 4.3 18.5

60-S 60.5 7.7 0.7 24.1

60-I 61.4 8.0 1.9 25.2

Alkali 30-S 58.3 11.8 3.9 18.5

30-I 59.9 11.5 2.6 19.7

60-S 57.9 9.7 3.3 19.6

60-I 60.8 10.2 2.4 20.9

Salt 5-S 59.7 7.8 1.7 26.2

5-I 60.6 8.3 1.9 24.1
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hematite, ankerite, etc.). Where, “-S” and “-I” repre-
sent surface and internal of sandstone samples respec-
tively. Comparing the proportion changes of mineral of 
4 weathered sandstones, the commonalities are the kao-
linite-mineralization of feldspar and the loss of calcite 
(cement). The most severe loss of feldspar and calcite is 
due to acid and salt cycles, hence a small amount of sand-
stone samples will also be disintegrated under these two 
weathering conditions. Although the freeze–thaw cycle is 
accompanied by the loss of feldspar, the loss of calcite is 
not severe. Compared to the cyclic conditions of acid and 
alkali solutions, the weathering state of surface and inter-
nal in the freeze–thaw cycle sandstone are almost the 
same. Due to the sodium sulfate will be generated in salt 
weathering, weathered sandstone samples are affected by 
the crystallization pressure of sodium sulfate, leading to 
the expansion of pore channels (connected pores) and 
intensified internal weathering.

Figures  9 and 10 show box plots of the variations 
of bulk porosity and static elastic modulus of weath-
ered sandstone. It can be seen that the increase of bulk 
porosity and the decrease of static elastic modulus can 
characterize different types of sandstone weathering 
effectively, but the degree of dispersion of acid weather-
ing and salt weathering is relatively larger. The initial bulk 
porosity and elastic modulus of 12 fresh samples were 
screened, and the usable data range for fresh sandstone 
was obtained, which is 7.2–8.3% and 1.33GPa–1.36GPa. 

The initial bulk porosity of Yungang sandstone is small, 
and the static elastic modulus is large. Compared with 
other sites of grottoes sandstone, Yungang sandstone is 
more dense in diagenesis. Compared with other indica-
tors such as wave velocity and hardness, bulk porosity 
can better reflect the microscopic weathering character-
istics. At the same time, the variations of static elastic 
modulus can accurately reflect the uniaxial compressive 
strength and the deformation ability of weathered sand-
stone, which is the macroscopic weathering character-
istics. However, it is not possible to test bulk porosity 
and staticelastic modulus directly on sandstone cultural 
heritages sites due to non-destructive testing methods 
can only be used. Hence, the prediction of bulk porosity 
and static elastic modulus is particularly important. In 
the Sect. “Experimental database collection and machine 
learning approach”, statistical characteristics analysis 
will is conducted on the experimental data firstly, and 
four different types of machine learning algorithms and 
criteria for measuring their regression performance are 
selected.

Experimental database collection and machine 
learning approach
Statistical characteristics and correlation of database
There is currently no appropriate code for evaluating the 
bulk porosity and static elastic modulus of Grotto sand-
stone quantitatively, especially subjected to multiple 

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 9 Box plot for Variation of P of different weathered sandstone

(a)Freeze-thaw (b)Acid (c)Alkali (d)Salt
Fig. 10 Box plot for Variation of  Es of different weathered sandstone
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weathering conditions. A few traditional weathering 
conditions are considered in previous studies, such as 
freeze–thaw cycle or salt cycle tests. As a result, a diver-
sify database of multi-weathered Grotto sandstone 
should be gathered. The database contains the experi-
mental results of 432 sets data available in Sect.  “Data-
set description and analysis of weathering experiments 

of sandstone” under acid, alkali, salt, freeze–thaw cycles, 
containing typical diseases of sandstone such as surface 
powdering, discoloration, cracks, etc. Figure  11 shows 
the statistical characteristics of each input and output 
features based on relative frequency distribution of test 
datasets. Nine input variables have been used to con-
struct the prediction models, which includes 4 macro 

(a)Vp (b)M (c)|cm|

(d)HRC (e)S-A (f)Ca+K-A

(g)Kln (h)Kfs (i)P

(j)Es

Fig. 11 Relative frequency distribution of experimental datasets
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parameters parameters and 4 microscopic parameters, 
and the bulk porosity (P) and static elastic modulus (Es) 
were specified as an output. The data were collected from 
Muti-Weathering Simulation Test of Yungang Sandstone 
in Sect.  “Dataset description and analysis of weathering 
experiments of sandstone”.

The plotmtrix of the normalized data and pearson cor-
relation matrix plot are shown in Fig.  12a and b using 
normalized data. As can be seen that there exist strong 
correlation between P, Es and macro indicators, especially 
the compression wave velocity (Vp) and hardness of leeb 
(HRC). Previous studies of the weathered sandstone in 
grottoes have also used these two indicators (Vp, HRC) 
as quantitative indicators of weathering degree directly. 
However, due to the large number of chemical reactions 
accompanying sandstone weathering processes, this is 
also a vital reason for introducing changes in indicators 
such as elements and minerals. It can be seen that due 
to the almost absence of mono-elemental substance in 
sandstone, the correlation between elements’ changes 
and P, Es is weak. The change in mineral composition 
implies a direct change in the internal structure and pore 
size distribution of sandstone, hence the relative content 
of minerals can better represent the degrees of weather-
ing, especially the content of kaolinite and feldspar. After 
that, 70% of the data were chosen as a training set and 
30% of the datasets were utilized as a testing set to verify 
the models’ performance and generalization capabilities.

Machine learning models
We selected 4 different types of state-of-the-art 
and frequently used algorithms for performance 

comparisons, that is: Multiple Linear Regression (MLR), 
Support Vector Regression (SVR), Gaussian Process 
Regression (GPR) and Artificial Neural Network (ANN). 
These algorithms are common types in the regression 
prediction field. Some scholars have also summarized 
its operating mode and mechanism [49]. Due to the 
parameter settings for each type of algorithm are 
different, we will select the best settings considering 
final performance and total execution time of above 
mentioned 4 algorithms (e. g., types of kernel function, 
number of layers, etc.).

MLR
MLR is one of the most commonly used type of 
regression analysis for statistical examination that is often 
used to scrutinize the connection between a dependent 
variable and more independent variables [50]. Linear 
regression models can be expressed by linear equations, 
and this information may be acquired by employing the 
regression line. For a total of n number of input features 
(xn), the MLR can be expressed as follows:

where: y is the predicted value; β0 is the intercept; β1 ~ βn 
are the line slope of xn.

SVR
SVR examines the extreme limits and draws the edges, 
and the extreme data points assist in determining the 
limitations (support vectors) [51]. SVR regression pro-
cesses are expressed as follows:

(1)y = β0 + β1x1 + β2x2 + · · · + βnxn

(a)Plotmatrix of normalized dataset (b)Pearson correlation matrix plot
Fig. 12 Correlation analysis of dataset
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where αi and βi represent Lagrange multipliers and b is 
the bias, and k(x, xi) is the kernel function that is a spe-
cial type of function used for nonlinear mapping in SVR. 
The kernel function is to map input data from the origi-
nal feature space to a high-dimensional feature space, 
making nonlinear problems in the original space linearly 
separable or approximately linearly separable in the high-
dimensional space as illustrated in Fig. 13. And polyno-
mial kernel functions is used in this work.

GPR
A Gaussian processes can be represented by a mean func-
tion and a covariance function [52], which can be defined 
as:

where fGP (x) is Gaussian processes; μ(x) is mean, and k(x, 
x0) is positive-semi definite kernel function which define 
the covariance between any two realization of f(x) and 
f(x0):

The mean is often assumed to be zero, and the kernel 
has parameters θ, i.e., k(x, x0|θ). For any infinite collection 
of inputs x1, x2,..., xn, the f (x1, x2,..., xn) = (f(x1), f(x2),..., f(xn) 
have joint multivariate Gaussian distribution.

where covariance matrix are defined by the kernel 
function:

The covariance function aids in the implicit specifica-
tion of model properties. As shown in Eq. (7), the funda-
mental and extensively used GPR is made up of a squared 
exponential covariance function and simple zero mean:

(2)

Z =
{(

x1, y1
)

,
(

x2, y2
)

, · · · ,
(

xn, yn
)}

and

yi =

i
∑

i=1

(αi − βi)× k(x, xi)+ b

(3)fGP(x) ∼ GP(µ(x), k(x, x′))

(4)k(x, x′) = cov
(

f (x), f (x′)
)

(5)f (x) ∼ N (0,KXX (θ))

(6)[KXX (θ)]i,j = k
(

xi, yi|θ
)

where, l and σf are the hyper-parameters and effect the 
performance of Gaussian Process. σf denotes the model 
noise and l is the scale of length. And rational quadratic 
kernel function is used in this study.

ANN
ANN abstracts the human brain neural network from the 
perspective of information processing and forms differ-
ent networks according to different connection methods 
[53]. ANN is composed of a large number of nodes (or 
neurons) connected to each other, with each node rep-
resenting a specific output function called the activation 
function. Each connection between two nodes represents 
a weight for the signal passing through that connection, 
which is equivalent to the "memory" of an artificial neu-
ral network. The output of the network varies depend-
ing on the connection method, weights, and activation 
function of the networks. In addition, back-propagation 
(BP) are commonly employed to decrease error. The sug-
gested network design is depicted in a simplified form in 
Fig. 14a.

The training process is performed through a gradient 
descent algorithm on the error space that includes local 
minima as outlined in Fig.  14b. A network structure 
with 4 hidden layers is used during training. The 
sigmod function (or named as S-shaped function) is 
selected as a activation function fac(x) of the hidden 
layer and output layer in this work, which can reflect 
the nonlinear relationship of the model. The specific 
expression is shown in Eq. (8):

This sigmoid function has smooth continuity proper-
ties, which makes it very useful in optimization algo-
rithms such as gradient descent. Its derivative is also 
easy to calculate, which is helpful for the application of 
backpropagation algorithm when training.

Performance criteria of ML models
Some statistical assessment criteria can be used to evalu-
ate the performance of the selected ML models. Coef-
ficient of determination  (R2) is a most commonly used 
criterion, which is evaluated by model prediction per-
formance and an R-value more than 0.85 shows a sig-
nificant connection. Some error-based criteria are also 
included in the evaluation methods, such as MAE (Mean 

(7)k(x, x′) ∼ σ 2
f exp

[

−|x − x′|2

2l2

]

(8)fac(x) =
1

arctan x + 1
or

1

e−x + 1

Fig. 13 Nonlinear mapping in SVR
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Absolute Error) and RMSE (Root Mean Square Error) 
[54]. The related mathematical expressions are expressed 
in Table 4. Where N is the number of datasets, bar x and 
y are the mean of measured and predicted values respec-
tively; Ei and Pi are the experimental in Sect.  “Dataset 
description and analysis of weathering experiments of 
sandstone” and predicted values respectively.

Combined with inputs and outputs data in Sect. “Data-
set description and analysis of weathering experiments 
of sandstone”, the methodology adopted in this work to 
achieve the objective is presented in Fig. 15. In this sec-
tion, four types of machine learning models will be used 
in 3.2 to form a surrogate model for predicting bulk 
porosity and static elastic modulus. In the Sect.  “Pre-
dicted performances and comparative analyses”, we 

evaluated the performance of the pretrained prediction 
model and selected the most suitable pretrained model.

Predicted performances and comparative analyses
Prediction of bulk porosity
The values of  R2, RMSE, CE and MAE comparison of 
best prediction models for bulk porosity are shown in 
Fig. 16. The variation of experimental data and machine 
learning models data with respect to data order are pre-
sented in Fig.  17. The  R2-value of this model is 0.9351, 
which is 5.38% and 3.08% lower than the GPR and ANN 
model respectively. The other performance indices such 
as RMSE, CE and MAE have values of 0.0039, 0.9408 and 
0.0030 respectively. Similarly, the best fitted model was 
with quadratic support vector in SVR. In this model, the 
 R2-value is 0.9525, which is 3.45% and 1.20% less than 
the GPR and ANN model respectively. The other perfor-
mance indices such as RMSE, CE and MAE have values 
of 0.0036, 0.9527 and 0.0024 respectively. Hence, GPR 
and ANN has shown good fitting performance using on 
training data, which have higher  R2-value and CE-value 
and lower RMSE and MAE.

When considering performance in testing process for 
prediction, there will exist significant changes in the 
predictive performance of different models for a new 
database, which may reflect negative performance such 
as overfitting of different pretrained models and gen-
eralization ability. Comparing the mentioned criteria 
such as fitting performances in each pretrained models, 
the  R2-value in testing process of MLR, SVR, GPR and 
ANN are 0.8883, 0.9137, 0.9089 and 0.9537, which is 
5.00%, 4.07%, 7.76% and 1.06% lower than that in train-
ing process; the CE-value in testing process of MLR, 
SVR, GPR and ANN are 0.8966, 0.9154, 0.9126 and 
0.9517, which is 4.70%, 3.92%, 6.50% and 0.84% lower 
than that in training process. It can be clearly seen that 

(a) Architecture (b) ANN searching mechanism
Fig. 14 Artificial neural network

Table 4 Performance criteria of ML models

Name of Criteria Expression Range

Coefficient of determination  (R2)

R =

N
∑

i=1

(xi−x)(yi−y)

√

N
∑

i=1

(xi−x)2(yi−y)2

0–1

Coefficient of Efficiency (CE)

CE = 1−

N
∑

i=1

(Ei−Pi )
2

N
∑

i=1

(Ei−Ei)
2

0–1

Root means Square Error (RMSE)
RMSE =

√

1

N

N
∑

i=1

(Ei − Pi)
2

0 Rep-
resents 
the best 
perfor-
mance

Mean Absolute Error (MAE)
MAE = 1

N

N
∑

i=1

|Ei − Pi |
0 Rep-
resents 
the best 
perfor-
mance
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Fig. 15 The flowchart of machine learning prediction

(a)R2 (b)CE

(c)RMSE (d)MAE
Fig. 16 R, RMSE, CE and MAE of fitted models for P
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(a)MLR(Training) (b)MLR(Testing)

(c)SVR(Training) (d)SVR(Testing)

(e)GPR(Training) (f)GPR(Testing)

(g)ANN(Training) (h)ANN(Testing)
Fig. 17 Performances of P predicted by ML approaches
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there exist varying degrees of overfitting effects in these 
three pretrained models based on MLR, SVR and GPR. 
It was indicated that the best fitted model in training 
process, that is GPR, may overfit the data when predict-
ing the bulk porosity. And its  R2-value and CE-value 
in testing process are even lower than the worst model 
(MLR). But the values of two criteria of ANN in test-
ing process are very closed to that in training process 
(which is about 1% deviation), indicating higher robust-
ness of pretrained model.

For the error performances, the increasing absolute 
value can be used to measure the generalization ability 
of new data. RMSE in testing process is 0.0010, 0.0013, 
0.0027 and 0.0004 higher than that in training process; 
MAE in testing process of MLR, SVR, GPR and ANN are 
0.005037, 0.0032781, 0.0041855 and 0.0021249, which 
is 0.0020, 0.0009, 0.0027 and 0.0001 higher than that in 
training process. Similar to the trend of changes in fitting 

performance, the errors of GPR are the largest, indicating 
lower generalization ability of this pretrained model. 
The absolute values of two error criteria of ANN in 
testing process are very closed to that in training process 
(which are 0.0004 and 0.0001 respectively). indicating the 
adaptability of ANN to new data is much stronger than 
other three pre-trained models.

Figure  18 compares the predicted values of all 4 
machine learning methods. At the same time, the per-
fect prediction line and parallel deviation lines (± 10%) 
are also provided. From the Fig. 18a, it can be seen that 
the main deviation of MLR occurs when the bulk poros-
ity is greater than 0.1, and the probability of deviations 
are greater than 10% using the test dataset is 9.8%. This 
pretrained model may lead to an overestimation of the 
predicted bulk porosity. From the Fig. 18b, it can be seen 
that the main deviation of SVR occurs when the bulk 
porosity is less than 0.1, and the probability of deviations 

(a)MLR (b)SVR

(c)GPR (d)ANN
Fig. 18 The scatter plots of observed vs predicted values of the ML models for P in both stages
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are greater than 10% using the test dataset is 3.8%. This 
pretrained model may lead to an underestimation of 
the predicted bulk porosity, but there exist high accu-
racy in weathered sandstone. From the Fig.  18c, it can 
be seen that the main deviation of GPR occurs when the 
bulk porosity is within 0.08–0.12, and the probability of 
deviations are greater than 10% using the test dataset is 
9.1%. This pretrained model may lead to an overestima-
tion of the predicted bulk porosity even in unweathered 
sandstone (low bulk porosity). From the Fig. 18d, it can 
be seen that the main deviation of ANN occurs when 
the bulk porosity is less than 0.11, and the probability of 
deviations are greater than 10% using the test dataset is 
only 2.3%.

Due to the complexity of microscopic structure and 
mineral composition of sandstone, the multiple detection 
indicators have significant variability in themselves. 
Hence, it should be noted that, generalization ability may 
have a much higher priority than accuracy for predicting 
the bulk porosity of grotto sandstone in weathering 
processes. Based on the analysis of the criteria, the most 
suitable machine learning model for predicting bulk 
porosity should be ANN, followed by SVR.

Prediction of static elastic modulus
The values of  R2, RMSE, CE and MAE comparison of best 
prediction models for static elastic modulus are shown in 
Fig. 19. The variation of experimental static elastic modu-
lus data and machine learning models data with respect 
to data order are presented in Fig. 20. The  R2-value of this 
model is 0.9578, which is 2.55% and 1.46% lower than 
the GPR and ANN model respectively. The other perfor-
mance indices such as RMSE, CE and MAE have values 
of 0.0261, 0.9635 and 0.0168 respectively. Similarly, the 
best fitted model was with linear support vector in SVR. 
In this model, the  R2-value is 0.9561, which is 2.72% and 
1.64% less than the GPR and ANN model respectively. 
The other performance indices such as RMSE, CE and 
MAE have values of 0.0380, 0.9629 and 0.0297 respec-
tively. Hence, GPR and ANN has shown good fitting 
performance using on training data, which have higher 
 R2-value and CE-value and lower RMSE and MAE. This 
training result is completely consistent with the predic-
tion of bulk porosity. For pretrained models, the  R2-value 
in testing process of MLR, SVR, GPR and ANN are 
0.9196, 0.9453, 0.9357 and 0.9641, which is 3.99%, 1.13%, 
4.73% and 0.79% lower than that in training process; the 
CE-value in testing process of MLR, SVR, GPR and ANN 

(a)R2 (b)CE

(c)RMSE (GPa) (d)MAE (GPa)
Fig. 19 R, RMSE, CE and MAE of fitted models for  Es
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(a)MLR(Training) (b)MLR(Testing)

(c)SVR(Training) (d)SVR(Testing)

(e)GPR(Training) (f)GPR(Testing)

(g)ANN(Training) (h)ANN(Testing)
Fig. 20 Performances of Es predicted by ML approaches
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are 0.9226, 0.9505, 0.9431 and 0.9681, which is 4.24%, 
1.29%, 4.46% and 0.83% lower than that in training pro-
cess. There exist overfitting effects in pretrained models 
based on MLR and GPR. The values of  R2-value and CE-
value of ANN and SVR in testing process are very closed 
to that in training process, indicating higher robustness 
of pretrained model.

For the error performances, RMSE in testing process of 
MLR, SVR, GPR and ANN are 0.0402, 0.0400, 0.0338 and 
0.0253, which is 0.0141, 0.0020, 0.0131 and 0.0002 higher 
than that in training process; MAE in testing process of 
MLR, SVR, GPR and ANN are 0.0301, 0.0360, 0.0334 and 
0.0161, which is 0.0133, 0.0063, 0.0209 and 0.0025 higher 
than that in training process.The errors of MLR and 
GPR are the large, indicating lower generalization abil-
ity of this pretrained model. The absolute values of two 
error criteria of ANN in testing process are very closed 
to that in training process (which are 0.0002 and 0.0025 

respectively), indicating the adaptability of ANN to 
new data is much stronger than other three pre-trained 
models.

Figure  21 compares the predicted values of all 4 
machine learning methods for prediction of static elas-
tic modulus. From the Fig.  21a–c, it can be seen that 
the main deviation of MLR, SVR and GPR occur when 
the static elastic modulus are greater than 0.85  MPa, 
0.99  MPa and 0.91  MPa respectively, and the prob-
ability of deviations are greater than 10% using the test 
dataset are 5.3%, 6.1% and 4.6% respectively. From the 
Fig. 21d, it can be seen that the main deviation of ANN 
occurs when the bulk porosity is greater than 1.04 MPa, 
but its deviations are almost within 10%. Due to the fact 
that the static elastic modulus of sandstone is the most 
macroscopic indicator, the decrease of its value can also 
be served as the final performance of weathered sand-
stone. Its decreasing patterns are related to changes in 

(a)MLR (b)SVR

(c)GPR (d)ANN
Fig. 21 The scatter plots of observed vs predicted values of the ML models for  Es in both stages
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weathering existence environment, mineral composition, 
and pore structure. At the main time, it can be seen that 
several regression algorithms have improved the accu-
racy of predicting elastic modulus to varying degrees 
compared to predicting bulk porosity. Compared to on-
site evaluation of bulk porosity, it’s more vital to obtain 
a more accurate and generalizable pretrained model for 
static elastic modulus. Based on the analysis of 4 criteria, 
the most suitable machine learning model for predicting 
bulk porosity should be ANN.

The comparative analyses and limitations of models 
for prediction weathering degrees of Yungang Grottoes 
sandstone
The prediction performance of the two ANN models was 
evaluated in the previous subsections. To further clarify 
the practical applicability of these models in the field, 
we compare The most distinct features of the models 
from Sects.  “Prediction of bulk porosity” and “Predic-
tion of static elastic modulus” with the current surrogate 
models used for predicting sandstone deterioration in 
the Yungang Grottoes. Other researchers have also pro-
posed efficient and accurate models for predicting the 
deterioration of Yungang sandstone. For instance, Liu 
et al. [55] proposed a three-layers neural network model 
(named 3-NNs) for predicting the uniaxial compressive 
strength and elastic modulus of Yungang sandstone, and 
Meng et al. [34] proposed a least squares-support vector 
machine (named LS-SVM) for predicting the weathering 
levels of Yungang sandstone. The dataset for Liu’s model 
is derived from sandstone samples subjected to differ-
ent freeze–thaw cycles, using compressive wave veloc-
ity, bulk porosity, and the number of cycles as inputs to 
predict mechanical parameters of the sandstone such as 
uniaxial compressive strength and elastic modulus. The 
architecture of Liu’s model is illustrated below (Fig. 22).

where, n represents the number of freeze–thaw cycles, 
and UCS is the uniaxial compressive strength. The 
dataset of Meng’s model is derived from different caves 

in Yungang Grottoes, using the transitivity of terahertz 
waves T as input to predict the weathering level of 
the caves. The weathering level L is determined by the 
compressive wave velocity, as follows:

where, the INT function  rounds the object  of the 
function up to the nearest integer, Vp0 is the compressive 
ultrasonic velocity of a fresh sandstone core. For the 
3-NNs model, bulk porosity is easily detectable due to 
the use of laboratory data. Therefore, bulk porosity is 
used as input in this model to predict other destructive 
detection indicators, namely uniaxial compressive 
strength and elastic modulus. However, in fact, the 
bulk porosity of the immovable stone cultural heritages 
at the Yungang Grottoes in-site are quite difficult to be 
detected. Meanwhile, the number of cycles n is a known 
parameter in the simulated weathering experiments, 
which cannot be measured in-site. Meanwhile, porosity 
is a direct quantification of the degree of weathering 
and should be used as an output (predicted value). The 
predicted value of LS-SVM is actually the compressive 
wave velocity [weathering level L in Eq. (9)], which is not 
a direct quantitative indicator representing the degree of 
weathering in grottoes, but an indirect indicator. Hence, 
the input of the ANN prediction model for bulk porosity 
and static elastic modulus proposed in this article are 
some convenient or collectable indicators in-site, such as 
wave velocity, leeb hardness, relative content of chemical 
elements, etc., with the aim of rapid and easy-to-use 
application; At the same time, this article used various 
conditions (environments) to simulate weathering, and 
the models have stronger generalization ability.

However, in reality, there still exist some limitations 
in proposed ANN models. Firstly, there are usage 
restrictions: the applicable range of bulk porosity is 
between 7.8 and 13.3%, and the static elastic modulus 
is between 0.79 to 1.37 Gpa. The applicable lithology 

(9)L = 10− INT

(

10
Vp

Vp0

)

(a)3-NNs proposed by Liu [57] (b)LS-SVM proposed by Meng [36]
Fig. 22 Architecture of proposed ML models for predicting the weathering levels of Yungang sandstone
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is only for sandstone in Yungang area (Datong, China). 
Moreover, it is important to note that the training data 
for this model is derived from equivalent weathering 
simulation experiments rather than actual weathering 
data due to the difficulty in obtaining the bulk porosity 
and static elastic modulus of the Yungang Grottoes. 
This could result in the model potentially being 
unsuitable for all actual weathering scenarios of the 
Yungang Grottoes. Additionally, the ML model (ANN) 
used is a classic general-purpose model, and it may be 
necessary to explore advanced AI baseline models that 
are more suited to weathering data. To obtain a more 
precise model capable of prediction of bulk porosity 
and static elastic modulus, we need sandstone samples 
with more weathering gradients and a denser testing.

In summary, the limitations affecting the model’s 
performance mentioned above could be addressed 
in the future by expanding the weathered sandstone 
dataset and the scale of model training, leading to the 
creation of a more versatile and accurate model, which 
can be utilized by researchers or cultural heritage 
conservators. By collecting non-destructive indicators 
from weathered areas of grotto heritage, researchers 
can obtain more detailed and accurate weathering 
information. This contributes to further grotto heritage 
conservation and informed decision-making.

Conclusion
Four mainstream machine learning techniques are used 
to evaluate the bulk porosity and static elastic modulus 
of weathered grottoes sandstone. Datasets are gathered 
from the experiments, which includes 432 groups 
effective experimental data including 8 inputs features. 
bulk porosity and static elastic modulus were considered 
as outputs to determine the weathering degrees 
of Yungang Grottoes sandstone. The performance 
parameters R, RMSE, CE and MAE were used to evaluate 
the performance of the ANN, GPR, MLR, SVR machine 
learning models. The following are the quantitative 
outcomes of this study:

The ANN is the best-fitted models for estimating the 
bulk porosity and static elastic modulus compared to 
MLR, SVR and GPR. The accuracy of the trained model 
for static elastic modulus is slightly higher than that of 
bulk porosity. The GPR and ANN model can accurately 
predict the bulk porosity with R-value 0.9854 and 0.9639 
for training stages and respectively and predict the 
static elastic modulus with R-value 0.9822 and 0.9718 
for training stages respectively. The modeling results 
obtained reveal that the ANN with multi-hidden layers 
developed is competent with high degree of precision 
and generalization ability for bulk porosity and static 
elastic modulus compared to other regression-based 

models (MLR, SVR, and GPR), as indicated by coefficient 
of determinations in the range of (0.9537–0.9641) 
during the testing stages of the built models compared 
to (0.8883–0.9453) coefficient of determination in 
regression-based models. The ANN model prediction 
efficiency was well adjusted for the actual and forecast 
datasets at the training and testing stages, and the error 
range was no more than 0.7% and 0.15 GPa at both stages 
of prediction for bulk porosity and static elastic modulus 
respectively.

Notably, data points in scatter plots of observed vs 
predicted values simulated by the ANN model were well 
adjacent to the linear 1:1 line, which was more than 95% 
and 97% of the data points in prediction for bulk porosity 
and static elastic modulus respectively. And the ANN 
based static elastic modulus prediction model’s error 
proportions significantly decreased and were confined to 
a modest range between + 10% and − 10%. The proposed 
models are only valid for the bulk porosity ranging from 
7.8 to 13.3% and the static elastic modulus ranging from 
0.79 to 1.37 Gpa, which can be utilized for the accurate 
prediction of the weathering degrees of shallow surface 
layer in Yungang Grottoes sandstone.

Some indicators that can be obtained in site (acoustic 
emission based wave velocity, hardness, chemical element 
content, etc.) are used to predict indicators that cannot 
be directly measured, such as static elastic modulus and 
bulk porosity mentioned in this work. When the model 
is trained, static elastic modulus and bulk porosity can be 
obtained directly by inputing multiple portable indicators 
of stone cultural heritage in site. In the near future, we will 
focus on model training for data from other rock types, 
seeking more detailed weathering related indicators (e.g., 
moisture content, mechanical properties, mineral content, 
etc.) and linking them with non-destructive testings (e.g., 
high-density electrical method, hyperspectral technology, 
X-ray fluorescence, etc.) quantitatively.
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