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Abstract 

Against the backdrop of the deep integration of culture and technology, research and practice in digitization of intan-
gible cultural heritage has continued to deepen. However, due to the lack of data and training, it is still very difficult 
to apply artificial intelligence to the field of cultural heritage protection. This article integrates image generation tech-
nology into the digital protection of Peking opera facial makeup, using a self-built Peking opera facial makeup dataset. 
Based on the StyleGAN2 network, we propose a style generative cooperative training network Co-StyleGAN2, which 
integrates the adaptive data augmentation (ADA) to alleviate the problem of discriminator overfitting and intro-
duces the idea of cooperative training to stabilize the training process. We design a Peking opera facial makeup 
image transform conditional generation network TC-StyleGAN2 which is transferred from unconditional generation 
network. The weights of the unconditional pre-training model are fixed, and an adaptive filtering modulation mod-
ule is added to modulate the category parameters to complete the conversion from unconditional to conditional 
StyleGAN2 to deal with the training difficulty of conditional GANs on limited data, which suffer from severe mode 
collapse. The experimental results show that the proposed training strategy is better than the comparison algorithms, 
and the image generation quality and diversity have been improved.

Keywords Digital protection, Peking opera facial makeup, Image generation, StyleGAN2, Co-training, Transfer 
learning

Introduction
Peking opera facial makeup, as a traditional Chinese 
art form, has primarily been studied in China. In the 
early stages, the research on Peking opera facial makeup 
mostly focused on analyzing the artistic aesthetic features 
of facial makeup, building a digital resource library of 
facial makeup, and elucidating the relationship between 

facial makeup colors, patterns, shapes and character per-
sonalities [1, 2]. With the support of traditional research, 
it focused on exploring the personality of the correspond-
ing roles in Peking opera facial makeup to achieve the 
task of personality trait recognition. On the other hand, 
it started from the visual symbols of Peking opera facial 
makeup to explore the work of digital modeling. Based on 
the Big Five personality traits, a subjective questionnaire 
on the personality traits of Peking opera facial makeup 
was designed, and it realized the transformation from 
the semantic space of facial makeup personality traits to 
the factor space of facial makeup personality [3]. Based 
on the artistic features of Peking opera facial makeup 
representing different categories, the database images 
were divided into categories to train the model, and the 
model was eventually used to identify the category of 
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the target Peking opera facial makeup image [4]. A facial 
makeup pattern library and a facial makeup auxiliary 
synthesis system were established. Among them, the 
Bezier curve was used to construct the vector pattern 
library of facial makeup, and the Free-Form Deforma-
tion (FFD) was used to realize the pattern deformation 
[5, 6]. Regarding the research on the two-dimensional 
projection of Peking opera facial makeup, video face rec-
ognition and video face tracking were used to project 
and cover the facial makeup on the face, and finally the 
Peking opera facial makeup was deformed according to 
different face features, while maintaining the shape of the 
facial makeup pattern and matching the key parts of the 
face [7]. Based on the depth camera, the Unity3D engine 
is used to conduct the research on the three-dimensional 
personalized modeling of Peking opera facial makeup, 
which is mainly using the registration and stitching of 
multi-frame face point clouds, the detection and track-
ing of face data, and the Laplacian mesh deformation 
algorithm to realize the three-dimensional modeling and 
deformation of facial makeup [8, 9].

All the above studies have contributed to the digital 
development and cultural inheritance of Peking opera 
facial makeup, but with the deepening of the research, 
we find that the incompleteness and ambiguity of image 
resources are still the pain points that cannot be avoided 
in the development process of Peking opera facial 
makeup. Few studies have integrated the digital modeling 
of Peking opera facial makeup with the personality traits 
implied in Peking opera facial makeup. Only by study-
ing the regularity of color and shape application in facial 
makeup drawing and the inevitable connection between 
facial makeup characters’ personality and role can we 
promote the development of Peking opera culture. With 
the advancement of deep learning in image generation, 
applying image generation and image translation to 
Peking opera facial makeup, generating facial makeup 
patterns that match different character personalities and 
roles, can generate facial makeup images that inherit cul-
tural genes, which is conducive to the preservation and 
development of Peking opera culture.

In our previous work, we completed the Peking opera 
facial makeup generation model, created a Peking opera 
facial makeup dataset, studied the image generation task 
under limited datasets, and used different data augmen-
tation methods to train the model, including explicit 
augmentation methods: geometric transformation, 
color transformation, and data expansion using pseudo-
samples generated by the generator; differentiable aug-
mentation methods: Randomly transforming data using 
a differentiable forward diffusion process, injecting 
instance noise, and learning facial makeup features based 
on the style-based GAN architecture 2nd (StyleGan2) 

network [10, 11], making the generated Peking opera 
facial makeup have good local randomness and visual 
quality. However, there are still some difficulties in using 
image generation models to generate Peking opera facial 
makeup. When the dataset is insufficient, the trained net-
work is prone to overfitting, resulting in unstable train-
ing in the whole dynamic training process. The effect of 
using a small amount of facial makeup data on the net-
work model training is not ideal at this stage [12]. Since 
most image generation models only sample the style of 
instance images, these networks have poor scalability and 
portability, and do not consider spatial relevance [13]. In 
addition, the generation model cannot learn the cultural 
connotation of Peking opera facial makeup well during 
training, such as ignoring the personality and role infor-
mation implied by the facial makeup, resulting in cha-
otic colors of the generated Peking opera facial makeup, 
which do not conform to the rules of Peking opera facial 
makeup.

To solve these problems, we start from the perspec-
tive of multiple discriminators and introduce the idea 
of cooperative training into StyleGAN2 to improve the 
discriminative ability of the discriminator. We design 
an adaptive filtering modulation to adjust the category 
parameters to deal with the training difficulty of condi-
tional Generative Adversarial Network (GAN) on lim-
ited data, which suffer from severe mode collapse. We 
finally integrate the generation model to form a complete 
unconditional Peking opera facial makeup generation 
model, and transfer the unconditional StyleGAN2 to the 
conditional StyleGAN2 of Multi-target Domains, result-
ing in a conditional generation model that can generate 
seven types of Peking opera facial makeup images. The 
evaluation indicators in the objective experiments are 
better than the current mainstream facial makeup gen-
eration model baseline. Our main contributions are as 
follows:

(1) We construct a style generative cooperative train-
ing network Co-StyleGAN2. We use adaptive data 
augmentation to alleviate the overfitting of the dis-
criminator at the input end. On the other hand, we 
introduce the idea of cooperative training, adopt 
a dual discriminator structure, and improve the 
generation performance by enhancing the feature 
extraction ability of the discriminator. We train and 
test on our self-built Peking opera facial makeup 
dataset, and compare the generation effect with the 
current excellent image generation models, verify-
ing the effectiveness of our algorithm.

(2) We design a Peking opera facial makeup image con-
ditional generation network TC- StyleGAN2 based 
on StyleGAN2. We freeze the weights of the pre-
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trained unconditional generation model, design an 
adaptive filtering modulation to adjust the category 
parameters, and use the modulation to transform 
from an unconditional network to a conditional 
network. We train and test on our self-built cat-
egory Peking opera facial makeup dataset, which 
not only solves the problem of mode collapse, but 
also generates facial makeup with accurate category 
attributes.

(3) We demonstrate the practicality of our method in 
the objective evaluation experiments. The experi-
mental results show that our model is superior 
to the current mainstream models in the facial 
makeup generation task, and significantly improves 
the indicators such as style attribute consistency 
and visual fidelity of the facial makeup.

Related work
Generative models The current mainstream generative 
models include Variational Auto-Encoder (VAE) [14], 
GAN [15], and Diffusion Model (DM) [16]. All three 
have advantages and disadvantages. VAE suffers from 
the problems of blurry generated images and insufficient 
randomness of target images; GAN network inevitably 
loses the diversity of generated images while ensuring 
the realism of generated images; Diffusion model is slow 
in the sampling process. In recent years, the most influ-
ential model with realistic generation quality is the con-
tinuously improved GANs. However, a study proposed in 
May 2021 showed that the image samples generated by 
the diffusion model are of higher quality than the cur-
rent state-of-the-art generative models based on GANs 
[17]. Taking the synthetic images of face generation task 
as an example, compared with GANs, the images gener-
ated by the diffusion model are more diverse and realistic 
in details, such as face pose, race, and whether wear-
ing glasses, and the single network constructed is more 
stable than the adversarial network of GANs. Although 
the diffusion model has great advantages in image gen-
eration, its sampling speed is slow during training and 
inference, resulting in very high training costs. Therefore, 
considering factors such as training cost and image gen-
eration quality, we prefer image generation models based 
on GANs.

GANs, StyleGAN and its variants In 2014, GAN [15] 
introduced a novel data generation approach inspired 
by game theory, where the generator and discrimina-
tor are trained to compete with each other to achieve 
a Nash equilibrium. DCGAN [18] proposed in 2016 is 
the pioneering work of face generation task, which uses 
convolutional neural network (CNN) to replace the 
multilayer perceptron in the original GAN, stabilizing 

the model training process. Progressive Growing of 
GANs (PGGAN) [19] uses progressive growing net-
work to achieve high-resolution image generation. But 
PGGAN is prone to feature entanglement, that is, it has 
very limited ability to control specific features to gen-
erate images. StyleGAN [20] proposed in 2019 adds a 
mapping network to disentangle the input vector on the 
basis of PGGAN, and uses adaptive instance normaliza-
tion module to precisely control the style information. 
Therefore, StyleGAN can not only generate high-
resolution and realistic images such as faces, but also 
can better control the generated images. In addition, 
the variants of StyleGAN include StyleGAN2 [21] and 
StyleGAN3 [22], which achieve excellent generation 
effects in the field of unconditional image generation. 
More and more studies [23–26] are taking advantage 
of the powerful image generation capabilities of GANs 
models to expand small sample datasets by generating 
more images, which largely solves the problem of image 
category imbalance in image classification training and 
lack of data in target detection tasks [27, 28].

Cooperative Training Cooperative Training was origi-
nally proposed to improve the classification recognition 
performance in the case of limited data. Ning X et  al. 
[29] and Multimodal co-learning [30] use multiple clas-
sifiers to learn and capture complementary information 
about limited data from different views, thus effectively 
alleviating data constraints. Based on this assump-
tion, Cooperative Training [31] proposes a dual-view 
training algorithm, and further shows that under the 
assumption that the two views of each instance are 
conditionally independent given the category, Coop-
erative Training has a similar Probably Approximately 
Correct (PAC) [32] guarantee for semi-supervised 
learning. In recent years, the idea of Cooperative Train-
ing has been introduced into various deep network 
training tasks, mainly applied to image classification 
and semantic segmentation. For example, to avoid the 
ideal conditions required by the dual-view training 
algorithm, Peng J et al. [33] proposes a deep Coopera-
tive Training technique that transforms from multi-
ple views to multiple learners, and encourages view 
diversity by training multiple deep neural networks in 
semi-supervised image recognition tasks. Ma Y et  al. 
[34] and Shahbazi M et al. [35] use the idea of coopera-
tive training in semantic segmentation task to align the 
feature categories between source domain and target 
domain, and use the divergence of two classifiers in the 
prediction of target domain to optimize the classifica-
tion decision boundary. In our work, we have referred 
to the cooperative training idea to build and train the 
network, which helps us adopt a dual discriminator 



Page 4 of 16Shen et al. Heritage Science          (2024) 12:358 

structure and enhance the feature extraction ability of 
the discriminator.

Method
Unconditional generation
Adaptive data augmentation module
If data augmentation is directly applied to the train-
ing task of StyleGAN2, it may cause the gain to leak to 
the generator. For example, if the data augmentation 
adds rotation, the generator will also generate rotated 
images. AmbientCycleGAN [36] conducted data per-
turbation experiments on GAN and concluded that if 
the data transformation is reversible on the probability 
distribution, then the model training will bypass the 
data perturbation and find the correct distribution. 
Therefore, it does not affect the generator training, 
and cause the gain leakage problem. Specifically, the 
strength of data augmentation is defined as a scalarp , 
and controls p ∈ [0,1) , then the data augmentation can 
become reversible in the training of StyleGAN2. The 
following will introduce the adaptive control method of 
data augmentation strength p in detail.

Since StyleGAN2 training is in a dynamic equilib-
rium state, the enhancement strength can be dynami-
cally controlled according to the overfitting degree of 
the discriminator, which can avoid the complexity and 
computational cost brought by manual adjustment. 
To quantify the degree of overfitting, we analyze the 
application of different data augmentation methods 
in GANs, focusing on a series of reasonable heuristics 
derived from the original output logic of the discrimi-
nator, and adapt the enhancement strength according 
to the heuristic matching a suitable target value.

ADA [37] uses standard geometric and color trans-
formations as data augmentation methods, and intro-
duces a probability-based adaptive strategy to stabilize 
the training process. Specifically, a heuristic algorithm 
is defined to estimate the part of the training set that 
obtains positive discriminator output. The overfitting 
heuristic is as follows:

where Dtrain represents the discriminator output of the 
training set, and E[·] represents the average of N  consec-
utive mini-batch discriminator outputs. In practice, N  is 
set to 4, Batch_size=16, that is the average of 64 images. 
For this heuristic, rt = 0 means no overfitting, and rt = 1 
means complete overfitting.

The strategy for using rt to adjust p is as follows: first, 
set a threshold t , and initialize p to zero. If rt indicates 
too much or too little overfitting about t (i.e., greater 
or less than t ), then the probability p will increase or 
decrease by a fixed step. The experiment is set up to 

(1)rt = E[sign(Dtrain)]

adjust p every four mini-batches, and clamps p to 0 
after each adjustment. In this way, the data augmenta-
tion strength can be adaptively controlled according to 
the degree of overfitting.

Since GAN itself has a powerful image generation abil-
ity, using the images generated by the generator in GAN 
is also a natural and feasible data augmentation scheme. 
APA [38] extends ADA by integrating the generated data 
with the standard data transformation methods as a new 
data augmentation method, and defines a new heuristic 
to estimate the part of the real images that obtain positive 
logit predictions from the discriminator. The formula is 
as follows:

where �r is consistent with the strategy of rt adjusting p 
mentioned above, except for the symbol difference. Since 
the generated data is treated as real data for training and 
passed to the discriminator, the optimization objective is 
updated as follows:

where α is the expected strength of the dynamic adjust-
ment effect in the whole training process. Since p ∈ [0,1) , 
it is stipulated that 0 ≤ α < pmax < 1 , where pmax is the 
maximum probability of adding generated data in the 
whole training process.

In addition to the data augmentation methods men-
tioned above, Diffusion GAN [39] studied adding noise 
to the input data of the discriminator, and proposed a 
new adaptive differentiable data augmentation method to 
alleviate the overfitting problem of the discriminator. It 
combines the diffusion model and injects noise from the 
Gaussian mixture distribution to achieve data transfor-
mation (the Gaussian mixture distribution is composed 
of weighted diffusion samples from clean images at dif-
ferent time steps).
∀t ∈ {1, · · · , T }, T = T + sign

(
rt − dtarget

)
∗ C . As the 

step length t increases, the noise-to-data ratio increases, 
making the task of the discriminator more and more dif-
ficult. Diffusion GAN designed the adaptive control of 
diffusion intensity, and modified:

where rt is as shown in Eq.  (1), the hyperparameter 
dtarget is a threshold for identifying whether the current 
discriminator is overfitting (referring to the threshold t 

(2)�r = E
(
sign(Dreal)

)
= E

(
sign(logit(D(x)))

)

(3)

min
G

max
D

V (G,D) =(1− α)Ex∼pr [log Dθ (x)]

+ αEz∼pz

[
logDθ (Gφ(z)))

]

+ Ez∼pz

[
log (1− Dθ (Gφ(z)))

]

(4)rd = Ey,t∼p(y,t)

[
sign

(
D
(
y, t

)
− 0.5

)]
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set by ADA [37] and APA [38], which is set to 0.6 in the 
experiment) C is a constant.

To encourage the discriminator to observe the newly 
added diffusion samples when T  increases, the distribu-
tion of the step length t is also defined:

We match a suitable target value by heuristic to achieve 
the purpose of adaptively adjusting the enhancement 
strength of different data augmentation methods. This 
study uses an adaptive data augmentation module to pro-
cess the input data, which avoids the generator leakage 
problem in an adaptive way, and uses data augmentation 
to alleviate the overfitting problem of the discriminator.

Style generative cooperative training network
We design a style generative cooperative training net-
work (Co-training StyleGAN2, Co-StyleGAN2), as shown 
in Fig.  1, which applies the cooperative training idea to 
the image generation with limited data, and learns from 

(5)

t ∼ pπ := Discrete

(
1

∑T
t=1 t

,
2

∑T
t=1 t

, · · · ,
T

∑T
t=1 t

)

multiple different but complementary views of the lim-
ited data to balance the training process.

We mainly design two Co-StyleGAN2 instances, 
which enable the discriminators to learn from unique 
and comprehensive views. As shown in Fig.  1, the 
architecture consists of four modules: Image Sam-
pling, Image Generation, Weight-variance Co-training 
StyleGAN2 (WCSG), and Data-variance Co-training 
StyleGAN2 (DCSG). Image Sampling samples images x 
from the limited training data, and Image Generation 
module uses generator G to generate images G(z). x 
and G(z) are fed into WCSG and DCSG to jointly train 
the discriminators D1 and D3 , where different views of 
x and G(z) are generated by random frequency compo-
nent suppression module R and fed into D3.

The first one is Weight-Variance Co-training WCSG, 
which is designed to jointly train two different discrimina-
tors by reducing the weight difference and diversifying the 
parameters. The second one is Data-Variance Co-training 
DCSG, which is designed to jointly train different discrim-
inators by inputting different views of the images. Spe-
cifically, different frequency components of each training 
image are extracted to generate different views.

Image Sampling

Sampling

x

D1

G(z)x

D3

D
a
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Fig. 1 Style generative cooperative training network architecture. We design two instances: Weight-variance Co-training StyleGAN2(WCSG) 
and Data-variance Co-training StyleGAN2(DCSG), discriminators are trained separately by diversifying the parameters and inputting images 
from different perspectives
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WCSG aims to learn two different discriminators 
D1 and D2 by diversifying the parameters. This study 
achieves different parameter learning by defining a 
weight difference loss that minimizes the cosine dis-
tance between the weights of D1 and D2:

where 
−−→
WD1 and

−−→
WD2 are the weights of D1 and D2 , and 

Lwd controls the distance between the two sets of param-
eters by calculating the cosine value of the angle between 
the two sets of weight vectors. The smaller Lwd is, the 
more diverse the weight parameters become, which 
suppresses the overfitting of the discriminator to some 
extent. Because when one tends to overfit, the weight dif-
ference loss will slow down the overfitting of the other 
discriminator. Therefore, the losses of D1 and D2 can be 
formulated:

where LDuc is the general discriminator loss, and Lwd is 
the weight difference loss defined in Eq.  (6). The weight 
difference loss is applied on D2 to ensure that the two 
discriminators learn different parameter information. 
Therefore, the total loss of WCSG is as follows:

DCSG designs to feed different views of the input 
image to two different discriminators D1 and D3 for 
data-variance co-training. Specifically, D1 is fed with the 
original input image, while D3 takes the input image pro-
cessed by the Random Frequency Component Suppres-
sion Module as input.

(6)Lwd(D1,D2) =

⇀

WD1

⇀

WD2∣∣∣∣
⇀

WD1

∣∣∣∣
∣∣∣∣

⇀

WD2

∣∣∣∣

(7)LWCSG
D1

= LDuc(D1; x,G(z))

(8)LWCSG
D2

= LDuc(D2; x,G(z))+ Lwd(D1,D2)

(9)LWCSG = LWCSG
D1

+ LWCSG
D2

The Random Frequency Component Suppression Mod-
ule consists of three processes and shown in Fig. 2. First, 
the image transformation and decomposition process 
Rt , which transforms the image from spatial representa-
tion to frequency representation, and decomposes the 
transformed image into multiple frequency components 
(FCs). Then, the random frequency component suppres-
sion process Rr , which randomly suppresses some FCs. 
Finally, the image reconstruction process Rt−1 , which 
connects the remaining FCs and transforms the image 
back to spatial representation.

Specifically, Rt first uses Fast Fourier Transform (FFT) 
to transform the image x , from spatial representa-
tion x ∈ RH×W×C to frequency domain representation 
xf ∈ C

H×W×C . In this experiment, x contains real image 
X or generated image G(z) . Then, it uses band-pass filter 
Bp to decompose xf ∈ C

H×W×C into multiple frequency 
components xfc ∈ C

H×W×C×N , where C represents com-
plex numbers. The formula of Rt(·) is as follows:

where xfc(i) ∈ C
H×W×C represents each FC, and N  is the 

number of decomposed FCs (default is 64). This paper 
constructs the band-pass filter Bp according to the litera-
ture [40].

The random FCs suppression process Rr uses a band-
stop filter to randomly suppress some FCs in xfc , while 
the rest of the FCs remain intact. The band-stop filter 
Br(·) is defined as follows:

where x′fc ∈ C
H×W×C×N is the FC representation after 

randomly suppressing frequency components, and I 
is a binary mask, where ’0’ indicates suppression and 
’1’ indicates retention of the corresponding FC. In this 
process, the values in I are randomly generated, and the 

(10)
xfc = Rt(x) = Bp(FFT (x)) = {xfc(0), xfc(1), . . . , xfc(N )}

(11)x′fc = Br

(
xfc, I

)
=

{
0, if Ii = 0,

xfc(i), if Ii = 1,

Fig. 2 The random frequency component suppression module
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percentage of ‘0’ is controlled by a hyperparameter P, 
which is set to 0.2 according to experience.

The image reconstruction process Rt−1 is the inverse 
process of Rt , which concatenates FCs in x′fc and converts 
the image back to the spatial representation. Therefore, 
the loss functions of D1 and D3 can be defined by the fol-
lowing formula:

The difference between the losses of D1 and D3  is 
mainly controlled by the different inputs from the ran-
dom frequency component suppression module. The 
overall loss of DCSG is as follows:

A single discriminator may overfit and focus on learn-
ing simple structures and patterns. This paper proposes 
a dual-discriminator training method for StyleGAN2 by 
introducing the idea of cooperative training. The new 
discriminator has the same internal structure as the orig-
inal discriminator, but is encouraged to learn different 
parameters or input data. D2 in WCSG and D3 in DCSG 
learn different information, complementing the original 
discriminator D1 , to pay attention to different types of 
information, improve the discriminator’s discrimination 
ability, and stabilize the training process.

Conditional generation
Unconditional StyleGAN2 can generate high-fidelity 
and diverse images through a stable training process on 
the same data. However, conditional StyleGAN2 trained 
on the limited data suffers from severe mode collapse. 
When mode collapse occurs, it generates images with 
weak diversity and similar features at best, and extremely 
similar and distorted images at worst. This part aims to 
alleviate the mode collapse problem and achieve image 
conditional generation using a single generative model.

The strategy of transformation from unconditional 
to conditional generation
To transition from unconditional G(z) to conditional 
G(z, c) , the generator needs to change the discrete archi-
tecture during the training process. By defining a transi-
tion function �t (the subscript t indicates the number of 
iterations during training), the generator is modulated 
to G(z, c, �t) to avoid tedious system modifications. �t is 
defined as follows:

(12)LDCSGD1
= LD(D1; x,R(G(z)))

(13)LDCSGD3
= LD(D3;R(x),R(G(z)))

(14)LDCSG = LDCSGD1
+ LDCSGD3

where, Ts and Te respectively represent the time steps 
when the transition starts and ends. The transition func-
tion �t ≥ 0 controls the transition from unconditional 
training to conditional training. �t = 0 means a purely 
unconditional learning, that is, the conditional infor-
mation does not affect the generator and discriminator 
networks. �t = 1 means that the current training has 
completely become a conditional generation state.

During the training, as �t increases, the conditional 
information is gradually merged by using the following 
form of generator:

where S and E are neural network modules that transform 
the latent vector and the conditional vector respectively.

Considering the large amount of training data required 
for conditional training and the instability of the per-
formance during the process, we propose a method of 
transferring pre-trained unconditional StyleGAN2 to 
conditional StyleGAN2 network (Transfer Conditional 
StyleGAN2, TC-StyleGAN2). Compared to transforming 
into multiple unconditional StyleGAN2 generation tasks, 
transforming into a multi-condition StyleGAN2 can not 
only reduce the time and resource cost of training multi-
ple models, but also the advantage of generating multiple 
categories with one model is that multiple classes share 
weights during training, thereby using the similarity 
between different categories to improve the image gen-
eration quality.

First, we define the unconditional dataset as the source 
domain Ds and the conditional dataset as the multi-
class target domain Dt . Given the pre-trained generative 
model f0(·) for the source domain, f0(·) is chosen as the 
unconditional Peking opera facial makeup generation 
model with the best generation quality. The goal of this 
study is to use transfer learning based on f0(·) to generate 
weight networks ft(·) for all classes in the target domain. 
To transform unconditional StyleGAN2 into conditional 
StyleGAN2, this study introduces class-specific param-
eters, which are modulated by the forward pass of the 
generator, to push the unconditional generative model 
towards the distribution of each target class. Next, we 
explain the basic principle of the adaptive filtering modu-
lation (mAdaFM) [41] applied to the class parameters.

Adaptive filtering modulation first removes the source 
style encoded by µ and σ , and then applies the style 
learned from γi and βi to model the statistics of the tar-
get distribution generation process. In this study, we 
apply this modulation to solve the problem of transfer 
learning across multiple domains. The network weights 

(15)�t = min

(
max

(
t − Ts

Te − Ts
, 0

)
, 1

)

(16)G(z, c, �t) = G(S(z)+ �t · E(c))
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W  and b are shared among all transfer classes, while the 
modulation parameters γi,βi and bi are the only chang-
ing parameters. By adjusting the modulation parameters, 
the unconditional basis network can be transformed into 
a conditional network.

Specifically, given the source domain—the fully con-
nected layer hs(x) = Wx + b of the unconditional 
pre-trained generative model, the pre-trained model’s 
weights W ∈ R

dout×din and input x ∈ R
din . To transfer to 

the target domain—the conditional generative model, 
this study readjusts its statistics to form different layers, 
as follows in Eq. (17):

where, γi,βi ∈ R
dout×din are both learned parameters, 

i = 1, · · · ,Nc represents the class label, Nc is the number 
of classes (in the experiments of this study, Nc = 7 ), µ 
and σ are respectively the mean and standard deviation 
of W .

Hypernetwork design
The purpose of the modulation class parameters is to 
optimize for each class in the target domain, yet these 
modulation parameters are not shared across different 
classes. To solve this problem, this study uses Hyper-
networks [42], which facilitates information sharing and 
reduces memory consumption by accumulating knowl-
edge in a newly introduced module.

In this study, we apply the hypernetwork H to condi-
tionally predict the modulation parameters for each tar-
get generative model. The input of the hypernetwork H is 
from the class embedding network C(i) = c ∈ V  , where 
V  is the class embedding space. The hypernetwork H 
takes the embedding vector c and maps it to the modula-
tion parameters, as demonstrated by:

where H is an affine transformation in the space V, and 
each modulation layer is set to have an H module, to 
achieve the purpose of sharing parameters between tar-
get classes.

Thus, the modulation formula for generating target-
specific activations hs(x) = Wx + b from the source 
domain—the fully connected layer hc(x) = Ŵcx + b̂c of 
the unconditional pre-trained model is as follows:

(17)Ŵi = γi ⊙
W − µ

σ
+ βi, b̂i = b+ bi

(18)
γc,βc = H(c),

bc = Hb(c).

(19)
Ŵc = γc ⊙

W − µ

σ
+ βc,

b̂c = b+ bc.

where W  and b are the frozen source weights. Finally, the 
generative weight networks ft for all classes in the target 
domain are assigned with the embedded class c and the 
normalized source weights w̃ , in order to produce the 
desired target weights.

We propose a hypernetwork architecture TC-Style-
GAN2 that transforms unconditional StyleGAN2 to con-
ditional StyleGAN2, as shown in Fig. 3, which improves 
the generator part based on the original conditional 
StyleGAN2. Combining the good generation perfor-
mance of the unconditional StyleGAN2 generative model 
and the training method of StyleGAN2 that focuses on 
the whole first and then supplements the details, and 
the discriminator’s sensitivity to contours and colors, we 
propose to first use an unlabeled dataset to train a good 
unconditional generator; then, combining the idea of 
knowledge transfer, we freeze the learned source weights 
and transfer them to an untrained conditional genera-
tive model (corresponding to the A and B modules in 
the dashed box in Fig. 3, representing the source domain 
weight freezing), and at the same time, the class embed-
ding network C(i) controls the class information through 
the affine H and modulation (corresponding to the H and 
Mod modules in the solid box in Fig. 3, representing the 
class modulation parameters trainable), thus obtaining 
an initial conditional StyleGAN2 model that generates 
well in details but has no class control; finally, we perform 
conditional generation training on this model, achieving 
the knowledge transfer from unconditional StyleGAN2 
to conditional StyleGAN2, which can achieve good con-
ditional generation results.

Experiments and results
The dataset of Peking opera facial makeup
In our previous studies [10, 11], we constructed a 
Peking opera facial makeup dataset for image genera-
tion research. The dataset mainly uses the method of 
cutting pictures from electronic scanned books, obtain-
ing 1286 hand-drawn facial makeup images, and also 
obtaining 494 machine-drawn vector images through 
web crawling. The image data was cleaned and filtered 
to remove duplicate facial makeup images, resulting in 
1780 original data. Then, only two methods of mirror-
ing and hue change were used to augment the original 
data, and finally a dataset containing 7120 Peking opera 
facial makeup images with a size of 256 × 256 × 3 was cre-
ated. As far as we know, this dataset is the richest data 
resource for Peking opera facial makeup images.

ft(·) = fw̃(c) = γc ⊙ w̃ + βc = ŵc.



Page 9 of 16Shen et al. Heritage Science          (2024) 12:358  

Experiments
To quantify the quality of generated images, the Fré-
chet Inception Distance (FID) [43] and Kernel Inception 
Distance (KID) [44] are often used as objective evalu-
ation metrics for image generation. FID is one of the 
most commonly used metrics to compare the similar-
ity between real and synthetic images. Its core idea is to 
embed real and generated images into a visually relevant 
feature space and compute the distance between the 
two distributions. KID computes the squared Maximum 
Mean Discrepancy (MMD) between the feature repre-
sentations of real and generated images, using a polyno-
mial kernel. Lower FID and KID values indicate higher 
quality of GAN-generated images.

As shown in Table  1, ADA achieves the best genera-
tion results by using standard data augmentation meth-
ods (geometric transformation and tonal transformation) 
to train StyleGAN2, producing face painting images with 
smooth lines and uniform colors. In theory, using gen-
erated data to expand the training set is a way to avoid 
model overfitting, which can stabilize the training pro-
cess and enable the generative model to learn more 
details and features of face painting and improve the 
quality of synthetic images. However, according to the 
experimental results analysis, the reason why APA has 
poor improvement effect may be due to the interference 
of the discriminator’s normal training by the addition of 
fake images. Simply put, when a fake image generated 
at the beginning is judged as fake by the discriminator, 
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Fig. 3 Hypernetwork architecture TC-StyleGAN2: Transforming from unconditional StyleGAN2 to conditional StyleGAN2

Table 1 Objective evaluation results on self-built Peking opera facial makeup dataset

Bold values represent the best performance and the best score in the experiment

Method Data augmentation Baseline Network FID ↓ KID ×10
3 ↓

StyleGAN2 None – 21.63 14.94

ADA Geometric and tonal transformations StyleGAN2 15.71 6.97
APA Image generation StyleGAN2 18.87 10.81

Diffusion-GAN Noise injection StyleGAN2 22.58 11.65
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and then this image is used as training data input to the 
discriminator, it will cause confusion in the true–false 
discrimination. ADA and APA explicitly enhance the 
images, but simply perturbing the real data distribution 
in GAN training may disturb the generated data distribu-
tion. Diffusion-GAN, under the same number of training 
times, has worse generation effect. This paper speculates 
that the main reason is that the discriminator learning 
not only needs to distinguish between real and fake data, 
but also needs to distinguish between diffusion-gener-
ated samples and diffusion-real samples. The injection 
of instance noise increases the learning task of model 
training. Although it avoids the catastrophic forgetting 
of the discriminator to some extent, it prolongs the train-
ing time. This paper hopes to find a way to reduce the 
training time cost but substantially improve the training 
effect.

The experiments in this paper show that data aug-
mentation is still the simplest and effective way to avoid 
discriminator overfitting and improve image generation 
quality. When lacking training data, applying data aug-
mentation to StyleGAN2 network can reliably stabilize 
the training and effectively improve the image genera-
tion quality. Of course, data augmentation cannot replace 
real data. Training StyleGAN2 should first try to collect 
a large amount of high-quality training set, and then use 
data augmentation to fill the gap. This paper applies dif-
ferent data augmentation methods in StyleGAN2 net-
work in an adaptive way, and explores that ADA using 
standard data augmentation is the best data process-
ing method. This will lay a good foundation for the later 

work, including improving the network structure and 
training strategy.

In the research work on unconditional image genera-
tion networks, we design ablation experiments for differ-
ent improvement modules, to demonstrate the feasibility 
of our research scheme. By leveraging the co-training 
concept, we learn complementary information from 
multiple perspectives, enhancing the discriminator’s dis-
crimination ability, which in turn provides more effective 
feedback to the generator. This ultimately improves the 
quality of image generation, allowing the discriminator 
and generator to maintain a more stable game state.

As shown in Fig. 4, using the FID metric to monitor the 
network training process, the FID value of StyleGAN2 
network exhibits a sudden surge at a certain point, lead-
ing to gradual divergence in training. By incorporating 
the co-training idea into the baseline network, the DCSG 
and WCSG networks proposed in this paper, without 

Fig. 4 Training process stability detection

Table 2 Objective evaluation results on the dataset

Bold values represent the best performance and the best score in the 
experiment

Method Baseline network FID ↓ KID ×10
3 ↓

StyleGAN2 – 21.63 14.94

FastGAN – 53.24 30.71

InsGen StyleGAN2 20.46 10.60

Projected GAN StyleGAN2 40.24 7.09

Projected GAN FastGAN 13.07 2.13
WCSG StyleGAN2 15.38 7.33

DCSG StyleGAN2 13.43 6.47
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adding the adaptive data augmentation module, exhibit a 
consistent downward trend in FID values throughout the 
entire training process, thereby enhancing the stability of 
the training.

Combining the above two modules, this research 
designs comparative experiments from the perspective 
of improving the discriminator, to verify the effectiveness 
of the Co-StyleGAN2 algorithm proposed in this paper. 
As shown in Table  2, the FID value of InsGen is better 
than the baseline network StyleGAN2, which proves that 
the discriminator’s discrimination ability and the genera-
tor’s generation ability are proportional. The FID value 
of FastGAN is far worse than StyleGAN2. The compara-
tive experiment Projected GAN proposes to use the 
pre-trained representation ability to improve the discrim-
inator, and Projected GAN based on FastGAN confirms 
that designing multiple discriminators to improve the 
discrimination ability can provide better feedback to the 
generator. And Projected GAN based on StyleGAN2 has 
very poor generation effect as expected, because using a 
very strong pre-trained network will make the discrimi-
nator too strong, and naturally it can easily discriminate 
between generated data and real data, resulting in serious 
training imbalance. And the WCSG or DCSG proposed 
in this paper can train stably and generate better results 
than the baseline network, which proves the effectiveness 

of introducing the co-training idea into StyleGAN2. This 
idea alleviates the overfitting of the discriminator by 
learning from multiple different views, thereby stabiliz-
ing the training process. The generator can better learn 
and fit the real image distribution, improving the quality 
of generation.

As shown in Fig. 5, the face painting images generated 
by InsGen and FastGAN have uneven color blocks; the 
Projected GAN based on StyleGAN2 has poor genera-
tion effect on the facial details of the face painting, and 
the patterns are messy. Under the condition that the FID 
indicators are not much different, although the quantita-
tive analysis data of Projected GAN based on FastGAN is 
the best, the face painting images generated by the pro-
posed DCSG are better in visual effect, and Projected 
GAN tends to produce messy circular spots on the pat-
tern details. The proposed DCSG and WCSG are obvi-
ously better than other models in evaluation results.

We construct C-StyleGAN2 [20] based on StyleGAN2 
to embed the category information. Conditional image 
generation is controlled by the hyperparameter cond . 
When cond = 0 , it represents unconditional genera-
tion during training, and cond = 1 signifies conditional 
generation. Shahbazi [35] utilizes a transitional train-
ing strategy, starting with unconditional StyleGAN2 and 
gradually injecting category conditions into the generator 

InsGen

Projected GAN

(StyleGAN2)

Projected GAN

(FastGAN)

DCSG

WCSG

FastGAN

Fig. 5 Qualitative results of different improved discriminator studies



Page 12 of 16Shen et al. Heritage Science          (2024) 12:358 

and objective function, ultimately achieving conditional 
StyleGAN2. In Shahbazi’s training, the official param-
eter settings are used: initially, cond is set to 1 , with 
t_start_kimg = 2000 indicating that class information is 
injected into the network starting from 2000kimg , and 
t_end_kimg = 4000 indicating that the model completes 
the transition from unconditional StyleGAN2 to condi-
tional StyleGAN2 by 4000kimg.

The TC-StyleGAN2 proposed in this paper transitions 
from a high-quality pre-trained unconditional Style-
GAN2 to a conditional StyleGAN2. The pre-trained 
unconditional StyleGAN2 network uses the DCSG net-
work, constructed in this study, with the best generative 
quality. The source weights learned by the unconditional 
StyleGAN2 network are first frozen as the initialized 

weights for training the conditional StyleGAN2. Sub-
sequently, cond = 1 is set for conditional StyleGAN2 
training.

In the research work on conditional image genera-
tion networks, we design a comparison of image gen-
eration effects with comparative experiments on two 
different datasets. We use quantitative analysis methods 
to evaluate the performance of our algorithm and other 
algorithms. We show the advantages of our algorithm in 
image quality and image diversity.

As shown in Table 3, Figs. 6,  7, we compare the visual 
effects of the conditional images generated by different 
methods. We point out that our method takes advan-
tage of the drawback of the discriminator, which focuses 
more on the category than the details under the guid-
ance of the category information, by continuing to train 
the conditional model on the effectively learned genera-
tive model, which is equivalent to playing a classification 
effect, achieving the detail characteristics and diversity 
of the intra-class generated images. We also demonstrate 
that our method allows effective transfer learning, where 
the frozen pre-trained weights are conditionally modu-
lated to produce outputs specific to the target category. 
Surprisingly, the C-StyleGAN2 yielded the worst FID 
scores on both conditional generation tasks. The quali-
tative results of the generated images also indicated that 

Table 3 The FID result on the dataset

Bold values represent the best performance and the best score in the 
experiment

Method Personality category Spectrum 
category

C-StyleGAN2 88.62 91.17

Shahbazi 20.82 19.62

TC- StyleGAN2 13.43 18.59

Fig. 6 Qualitative results for Personality Category. (From left to right: real facial makeup, C-StyleGAN2, Shahbazi, TC-StyleGAN2; From top to bottom: 
treacherous, demonic, integrity, loyalty, old, ugly, and reckless)
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the complexity of the original conditional generation net-
work in StyleGAN2 was insufficient to generalize effec-
tively to the two proposed facial makeup conditional 
generation tasks.

As shown in the blue boxes in Figs. 6,  7, the intra-class 
variation of C-StyleGAN2 is very small, mainly limited to 
the color change of the face painting, while maintaining 
the same structure and pose. In addition, the images lack 
realism and contain obvious artifacts. Compared with 
C-StyleGAN2, our TC-StyleGAN2 does not suffer from 
mode collapse, and the face painting images generated 
are not limited to one style, and the face painting details 
are more diverse. Compared with Shahbazi’s research, 
our TC-StyleGAN2 does not have the problem of cat-
egory information leakage. Shahbazi proposed a transi-
tion training strategy that has the problem of incomplete 
transition, for example, as shown in the red boxes in 
Fig. 6, the whole face category face painting will appear 
in multiple category face painting; as shown in the red 
boxes in Fig. 7, the three-tile face category face painting 
will appear in the generated six-part face category face 
painting images, or the clown face category face paint-
ing will appear in the generated whole face category face 
painting images.

The above evaluation methods for the generated images 
are all calculated from a macro perspective. Generally 

speaking, the score improvement represents that the 
generative model learns more details and the generated 
samples are more realistic and natural. In addition to 
generating high-fidelity images, more attention should 
be paid to the situation where the generative model gen-
erates non-realistic images during the evaluation. This 
study designs to independently generate 5000 samples by 
each model and find the worst samples compared with 
the real image distribution.

Specifically, first use the Inception [45] feature space 
of the real images to fit the Gaussian model. Then cal-
culate the log-likelihood of each sample given the 
Gaussian prior, and display the image with the small-
est log-likelihood (the largest Mahalanobis distance), 
that is, the sample with the worst image quality in the 
generated samples. Mahalanobis Distance (MD) [46] 
represents the covariance distance of the data, which is 
an effective method to calculate the similarity between 
two unknown sample sets. The formula is in Eq. (20):

where x and y are the real and generated samples respec-
tively, 

∑
 is the covariance matrix of the real image 

(20)d =

√
(x − y)T

∑−1
(x − y)

Fig. 7 Qualitative results for Spectrum Category. (From left to right: real facial makeup, C-StyleGAN2, Shahbazi, TC-StyleGAN2; From top to bottom: 
ugly, six-pointed, three-piece, cross-shaped, floral, demonic, whole)
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dataset. The worst samples obtained by the calculation of 
each model are shown in Fig. 8:

It is observed that the most prominent problem of 
the baseline network StyleGAN2 is that the generated 
facial makeup images have strange artifacts (as shown 
by the red box in Fig. 8), which is similar to the prob-
lem of APA; the second is the deformation of the facial 
makeup head or facial features, as shown by the blue 
box in Fig. 8, the facial makeup head of APA, Diffusion 
GAN and InsGen are deformed, and the facial features 
of Projected GAN are lost or distorted in multiple facial 
makeup images; the last is the distortion of the facial 
makeup lines, as shown by the yellow box in Fig. 8, the 
most obvious is that the lines in the facial makeup gen-
erated by Projected GAN based on FastGAN are fine 
and messy, which also exist in ADA and the WCSG and 
DCSG proposed in this paper. In contrast, the method 
of this study can not only generate high-quality Peking 
opera facial makeup, but also avoid the problems of 
artifacts, head and facial features deformation, etc. that 
exist in other models.

AR visualization
To give full play to the application value of the Peking 
opera facial makeup images generated by this study, and 
to display the generated facial makeup images to the 

public and popularize the knowledge of facial makeup 
briefly, this part adopts AR technology and designs a 
Peking opera facial makeup AR face-changing system 
based on mobile devices. The basic module is based on 
the Augmented Faces API of AR Core, which uses the 
ARFace component to present the default material on the 
detected face mesh model, as shown in Fig. 9, which con-
tains a dense 3D face mesh model with 468 points and 
the default material on the face mesh. With the help of 
the face mesh model, different details of texture maps can 
be drawn.

Figure  10 shows the different face-changing effects. 
Users can complete the free face-changing function, and 
the Peking opera facial makeup fits the face normally. 
Users can see the unique Peking opera facial makeup 
images generated by this paper in the face-changing pro-
cess. The Peking opera facial makeup generated by the 
generative model has high application and research value.

StyleGAN2

ADA

APA

Diffusion GAN

InsGen

Projected GAN

(FastGAN)

Projected GAN

(StyleGan2)

WCSG

DCSG

Fig. 8 The worst Peking opera facial makeup sample example

(a) Face mesh model (b) Mesh assigned default material

Fig. 9 3D face mesh

Fig. 10 Face changing effect example
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Conclusions
Image generation technology can generate unique and 
novel images by mimicking human creative rules, which 
is irreplaceable for artistic creation, graphic design and 
other fields where data resources are precious. In this 
paper, based on deep learning methods, we improve the 
StyleGAN2 network structure in generative adversarial 
networks, and propose two models: Co-StyleGAN2 and 
TC-StyleGAN2, to achieve unconditional and conditional 
generation tasks of Peking opera facial makeup images. 
By comparing with the advanced algorithms in the field 
of image generation, our algorithm can not only guaran-
tee high FID and KID values, but also generate Peking 
opera facial makeup images with better visual effects 
than other algorithms. Finally, we design a module to dis-
play the generation effects of Peking opera facial makeup 
based on Unity.

For future work, there are several research goals 
including: (1) Dataset Usage and Expansion: This paper 
focuses on the task of face mask generation, using our 
self-constructed Peking Opera face mask dataset. How-
ever, we did not use our proposed adaptive data augmen-
tation module for experiments on other image datasets 
of different scales. Future work should apply this data 
augmentation module to other image datasets to evalu-
ate its generality and effectiveness; (2) Dynamic Adjust-
ment of the Discriminator: The discriminator plays a 
crucial role in the training of GANs. The data distribu-
tion of generated images continuously changes due to the 
evolving generator, impacting the discriminator’s task of 
distinguishing real from fake images. Therefore, future 
research will explore dynamically adjusting the capacity 
of the discriminator to better adapt to this time-varying 
task; (3) Evaluation Metrics for Image Generation Qual-
ity: Experimental results show that commonly used 
objective evaluation metrics for image generation quality, 
such as FID and KID, differ from human subjective eval-
uations. FID is primarily concerned with a few features, 
aiming to assist ImageNet classification [47] rather than 
providing a thorough analysis of the entire image. Future 
research will investigate replacing the feature space of 
FID with models such as CLIP [48] and self-supervised 
SwAV [49] to reduce the influence of ImageNet classifica-
tion on the effectiveness of FID.
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