
Kleynhans et al. Herit Sci            (2020) 8:84  
https://doi.org/10.1186/s40494-020-00427-7

RESEARCH ARTICLE

An alternative approach to mapping 
pigments in paintings with hyperspectral 
reflectance image cubes using artificial 
intelligence
Tania Kleynhans1*  , Catherine M. Schmidt Patterson2  , Kathryn A. Dooley3, David W. Messinger1 
and John K. Delaney3*

Abstract 

Spectral imaging modalities, including reflectance and X-ray fluorescence, play an important role in conservation 
science. In reflectance hyperspectral imaging, the data are classified into areas having similar spectra and turned into 
labeled pigment maps using spectral features and fusing with other information. Direct classification and labeling 
remain challenging because many paints are intimate pigment mixtures that require a non-linear unmixing model for 
a robust solution. Neural networks have been successful in modeling non-linear mixtures in remote sensing with large 
training datasets. For paintings, however, existing spectral databases are small and do not encompass the diversity 
encountered. Given that painting practices are relatively consistent within schools of artistic practices, we tested the 
suitability of using reflectance spectra from a subgroup of well-characterized paintings to build a large database to 
train a one-dimensional (spectral) convolutional neural network. The labeled pigment maps produced were found to 
be robust within similar styles of paintings.
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Introduction
The development of spectral macroscale mapping modal-
ities has provided conservators, scientists and art his-
torians with the ability to examine the distribution of 
pigments across works of art with unprecedented detail. 
This allows for a more robust understanding of an artist’s 
creative process, and helps answer certain art historical 
research questions. Importantly, it also informs conserva-
tors and museums on how to better preserve these works 
based on their materiality, propensity for degradation, or 

even by identifying degradation products of processes 
already occurring. The availability of pigment maps for a 
work of art, where each class is labeled as a specific pig-
ment or pigment mixture, greatly enhances the ability for 
conservators to analyze paintings.

Currently the most widely used macroscale imaging 
modalities for art examination are imaging X-ray fluores-
cence (XRF) spectroscopy [1], and reflectance hyperspec-
tral imaging (typically 400 to ∼ 1000 nanometer (nm) 
and sometimes out to 2500 nm) [2], otherwise known 
as reflectance imaging spectroscopy (RIS). These two 
modalities provide complementary information that can 
be used to identify and map many of the pigments over a 
painting’s surface [3]. Both modalities consist of numer-
ous narrow spectral band images, thus creating a 3-D 
image cube, where the first two dimensions are spatial, 
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and the third dimension is spectral. This produces a spec-
trum at each spatial pixel in the image cube. The process-
ing of these data cubes has focused on grouping spatial 
pixels having similar spectral information, allowing visu-
alization of locations on a painted surface that may share 
a chemical makeup. While XRF data can be processed 
readily to make elemental maps [4], the direct transla-
tion of these into labeled pigment maps is, in general, 
not possible, as the same element can often be found in 
more than one pigment (though exceptions occur, such 
as the element mercury which can usually be assigned to 
the pigment vermilion in a painted object). Analysis of 
RIS data cubes of paintings is more challenging, and has 
typically utilized workflows and algorithms developed for 
remote sensing of minerals and vegetation.

Generally in remote sensing, the exploitation of reflec-
tance image cubes to make classification and/or material 
maps has been an active area of research for decades, 
utilizing both physics-based and data-driven algorithms 
[5–7]. Classification maps help segment large reflectance 
image cubes into a discrete set of representative spectra 
(known as endmembers or classes). A classification map 
groups related spectra that comprise a given class, but 
does not identify the specific materials present. A mate-
rial map goes further and identifies the specific materials 
(e.g. minerals) that make up each class.

A typical workflow in remote sensing for automatically 
labeling classes into materials requires a priori knowl-
edge of the area imaged, specifically, sufficient knowledge 
of what materials are to be expected must be known so 
that the appropriate spectral library of pure materials can 
be selected. Then one of a variety of algorithms can be 
used to find the best library spectral match to the spectral 
endmember for each class. This approach requires librar-
ies that consist of a handful of spectra for each known 
pure material in the area imaged [8–10]. The success of 
this approach is limited when there are variations in the 
reflectance spectra of a material – such as those caused 
by variation in particle size – in the area imaged that are 
not present in the spectral library [11].

If the spectra are linearly mixed, that is if the endmem-
ber spectrum is from a pixel that covered a portion of 
area imaged consisting of more than one material that are 
spatially separated, then the endmember spectrum can 
be fit by an area-weighted linear combination of the pure 
materials as found in the library. If however the materi-
als are mixed intimately, resulting in light that does not 
simply reflect off one material and into the hyperspectral 
camera but instead is reflected and/or absorbed by the 
other adjacent materials (i.e. scattering) before entering 
the camera, then the measured spectrum is not in general 
a weighted linear sum.

For intimate mixtures a non-linear unmixing model is 
required to correctly assign the materials present in each 
class and thus make an accurate material map [12]. Two 
types of models have evolved over time. The first are the 
physics-based models that require knowledge of physical 
and optical properties of the materials in the mixture, as 
well as information about the pigment stratigraphy [13, 
14]. Approximations are often made in such models to 
reduce the amount of detailed information required.

Alternative data-driven models have evolved in part as 
a solution to these challenges of intimate mixing. Because 
neural networks and deep learning models can model 
non-linear functions, these models have recently been 
applied to the remote sensing RIS classification chal-
lenge with growing success [15, 16]. However, to create 
accurate material maps with convolutional neural net-
works (CNN), large labeled reflectance databases (train-
ing datasets) are required. Spectral signature libraries of 
pure materials typically do not contain sufficient sample 
diversity to create robust material maps when a class is 
comprised of an intimate mixture. Currently only a hand-
ful of open-source, labeled, remote sensing RIS datasets 
are available for developing classification models, and 
they are limited to one area imaged with less than 20 
unique classes each (e.g Salinas, Indian Pines, Pavia data-
sets [17]). Several studies have been performed which 
indicate that neural networks can outperform traditional 
un-mixing methods when applied to RIS remote sensing 
data [18–21].

To date the majority of RIS data sets of paintings have 
been analyzed with linear mixing algorithms in order 
to create classification maps. The most commonly used 
workflow is the Spectral Hourglass Wizard (SHW) in 
the Environment for Visualizing Images (ENVI) soft-
ware [22–24]. The application of this workflow has been 
most successful when identification of the clusters which 
define potential classes is done manually, by an experi-
enced user, in a reduced dimensional space with a subset 
of the spectra from the RIS data cube. Such processing, 
while successful, is also time-consuming [2, 25]. Other 
automatic and more rapid algorithms to generate the 
class maps have shown promise but tend to only find 
about 70 to 80% of the classes in real paintings [25]. All 
of these algorithms utilized in these workflows assume 
linear mixing and mixtures of pigments are treated as a 
single paint (a relatively consistent mixture of colored 
pigments) and hence a unique material. Labeling of the 
paint classes into their component pigments (i.e., labeled 
pigment maps) is done either by identifying character-
istic reflectance spectral features or by spatially fusing 
the class maps with results from other analytical meth-
ods, e.g., XRF, extended-range reflectance (near-ultra-
violet, near-infrared, and mid-infrared), and Raman 
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spectroscopies, which provide more detailed chemical 
information. One promising non-linear unmixing model 
uses a convolution neural network architecture to sepa-
rate X-ray images of artwork painted on both sides of 
their support [26].

Other approaches that have been explored in the analy-
sis of RIS image cubes from paintings skip the classifica-
tion step in order to directly assign the pigments present. 
Among these is the Kubelka-Munk model [27] which can 
predict the reflectance spectra for intimate mixtures of 
pigments in optically thick paint layers from a weighted 
sum of the ratios of the absorption (K(� )) and scatter-
ing (S(� )) coefficients of each pigment. The pigments in 
the mixtures are thus determined by a least squares fit-
ting of the unknown reflectance spectra using a library 
of K(� ) and S(� ) coefficients for the pigments expected 
to be present. These approaches have yielded good suc-
cess for paint-outs and model paintings prepared from 
the pigments in the reference library, but have had lim-
ited success on real paintings [28, 29]. This is likely due 
to a variety of factors including the fact that in the visible 
spectrum region more than one mixture of pigments can 
provide a good fit. An interesting proposed work-around 
to this problem is the use of a neural network to pre-
select the pigments for the least squares fitting of the K 
& S parameters from a library [14]. The wide array of art-
ists’ methods for achieving a particular visual appearance 
(such as using a lower paint layer to create specific opti-
cal effects), however, rely on the use of a variety of mate-
rials and mixtures used, pigment particle sizes, and paint 
layer thicknesses, which present a major difficulty when 
implementing the Kubelka-Munk approach.

Analysis of paintings by conservators and conserva-
tion scientists over the years has documented the diver-
sity of paintings by individual artists and artistic schools 
throughout history. There is a widespread use of pigment 
mixtures and layered paint structures (stratigraphies) 
in paintings from the late medieval through to the cur-
rent time. Artists used materials from different sources 
and often combined pure pigments to expand the range 
of colors, or hues, available to them. In any given area of 
a painting, there may be anywhere from a single layer of 
paint to a highly complex stratigraphy of a preparatory or 
ground layer (often chalk or gypsum), one or more paint 
layer(s), colored transparent glazes, and varnish layers. In 
RIS the paint stratigraphy cannot be ignored since deeper 
layers can become visible in the deep red to near-infra-
red spectral region ( � > 600 nm ) owing to the decreased 
electronic absorption and light scattering of the pigment 
particles. Since the layered structure of a painting and 
the pigments that comprise each layer are not known in 
advance, a priori physics-based modeling is challenging 
for these complex datasets, especially since a robust open 

source two-parameter (absorption and scattering) spec-
tral library of pigments is not available (although reflec-
tance spectra of paints made using historical recipes 
pigments containing a limited number of pigments have 
been measured) [30].

To overcome the limitations of applying physics-based 
models for intimate mixtures found in paintings (lack 
of sufficient information on the optical properties of 
the pigments likely present and their stratigraphy), in 
this study we have chosen to explore a single-step data-
driven solution to pigment labeling of reflectance spectra 
from RIS data. However, like the data-driven solutions 
for non-linear mixing in remote sensing, a large training 
dataset is needed to train the network models. Further-
more, the spectral training database for a neural network 
model must include the cases of intimate pigment mix-
tures, making these databases even larger than those for 
physics-based models.

While fine art painting is a highly creative human 
endeavor, examination of real objects suggests that art-
ists did follow some patterns in working with materials 
to achieve desired colors and visual effects. For example, 
the fast-drying paints used in tempera painting (paint-
ing using a water-soluble paint binder such as egg yolk 
or gum arabic) could not be blended and reworked in 
the way that the slower drying oil paints offered. With 
the adoption of drying oils, the number of paint lay-
ers increased from a few to tens of layers. Materials also 
changed, minerals, plants and insects provided many pig-
ments before chemical manufacture of pigments in the 
18th century dramatically changed what was available 
and used by artists. Thus, in general, the pigments and 
pigment mixtures, paint thicknesses, and the number of 
layers encountered in a painting is expected to vary with 
the materials available and artistic practice at any point in 
time, and in a somewhat predictable manner.

The adherence to a set of practices, and use of particu-
lar sets of artist materials, often overlaps with defined 
artistic schools (defined historically or geographically). 
This fact offers a possible solution to making a robust 
training library for a data-driven model for directly labe-
ling pigment maps from RIS data cubes of paintings. In 
this paper we explore the suitability of building a train-
ing dataset from regions of well-characterized paintings 
for an end-to-end supervised one-dimensional convolu-
tional neural network (1D-CNN). The 1D-CNN architec-
ture was chosen due to state of the art performance when 
using 1D signals [31]. Spectra from paints containing 
single or multiple pigments are collected for the training 
library to incorporate the inherent variability in the data. 
This leverages the inference that for a collection of related 
paintings, artists follow a similar, but not identical, work-
ing process. Such training sets can therefore be expected 
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to contain most of the diversity in hue and intensity 
required for robust classification, which is not found in 
pigment libraries. When new RIS image cubes are pro-
cessed using the 1D-CNN model, they will be labeled as 
containing particular pigments, creating a material map 
in a single step.

To test the pigment maps created by the 1D-CNN 
model, test cases based on paintings in 14th century illu-
minated manuscripts were used. The resulting 1D-CNN 
was assessed in two ways. First, the model’s mean-per-
class-accuracy was computed to evaluate the perfor-
mance of the model. Secondly, the model’s results were 
compared to those obtained via the more common, two-
step approach (spectral classification followed by labeling 
of pigments present based on additional information) to 
verify the accuracy of the model. Paintings from two illu-
minated manuscripts were used to test the robustness of 
the model.

Results
Data and experimental Setup
The workflow to create a neural network with an appro-
priate training dataset and to produce labeled pigment 
maps of paintings is outlined in Fig. 1 and consists of four 
steps: 1. collect a sufficiently large spectral training data-
set in which the pigments for each spectra are labeled; 2. 
create a neural network to predict pigments present in 
the input RIS spectra; 3. validate the accuracy of the net-
work (predictions of pigments present) with a hold-out 
sample (10% of the training data); and 4. test the network 
prediction of pigments present on two well-characterized 
paintings that were not part of the training dataset.

In order to build a reasonable pigment labeled reflec-
tance spectral training dataset for a given artistic school, 
paintings from which training data are selected must 

meet several constraints. They must be painted using 
a similar suite of materials, and generally with similar 
painting methods with respect to ground application (or 
absence thereof ), degree of layering, degree of pigment 
mixing, etc. as described above. They need not, necessar-
ily, be painted by the same artist, so long as these general 
criteria are met. Having reflectance data from the work 
of several artists who paint using similar methods may 
make the training data more robust. Manuscript illumi-
nations (the painted images found within early books) 
have been widely analyzed by RIS [32–34] and provide an 
ideal test case for the approach used here. We have there-
fore selected paintings from a single book likely executed 
by a small number of artists, all with access to similar pig-
ments, and following similar painting techniques with 
respect to pigment mixtures and glazes (that is, operating 
in the same general school of artistic practice).

Additionally, the set of pigments used in manuscript 
illumination is relatively limited, and well-studied, mak-
ing it possible to confidently identify examples of the 
most commonly encountered pigments, pigment mix-
tures, and painting techniques [35–39]. For example, pur-
ple pigments can be derived from natural materials such 
as mollusks, lichens or dye plants, or by using mixtures 
of blue pigments (e.g. azurite, ultramarine, indigo) with 
red lake pigments (such as carminic acid or brazilwood) 
to create purple hues. Similarly, blue pigments were often 
mixed with yellow pigments (lead tin yellow or yellow 
dyes precipitated onto substrates) to expand the range 
of copper-based green materials available to an illumina-
tor. The possible combinations of materials could create 
variation even within a single object in the painting. To 
model the three-dimensional form of a blue azurite robe, 
for example, lead white could be mixed in larger amounts 
to achieve highlights on the robe, or a transparent red 

Fig. 1  Workflow for the creation, validation and testing of the trained 1D-CNN model
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lake could be layered on top of the blue to define purplish 
shadows. Both mixing and layering can contribute to the 
non-linear mixing effects evident in reflectance spectra 
from such areas.

The reflectance training dataset created for the 
1D-CNN consisted of spectra collected from four well-
characterized paintings from an illuminated manuscript 
containing many of these commonly encountered mate-
rials and mixtures. The manuscript chosen for this work 
was the Laudario of Sant’Agnese (c. 1340), one of only 
three surviving illuminated books of this type (a laudario 
is a collection of hymns of praise), and which has individ-
ual illuminations (described as paintings throughout this 
paper for clarity) by at least two artists, which are now 
dispersed in several collections around the world [40–
42]. The paintings used to build the training set (Addi-
tional file 1: Figure S1) include: 

1	 The Martyrdom of Saint Lawrence, Pacino di Bona-
guida, about 1340, Tempera and gold leaf on 
parchment. Getty Museum, Los Angeles, Ms. 80b 
(2006.13), verso

2	 The Ascension of Christ, Pacino di Bonaguida, about 
1340, Tempera and gold leaf on parchment. Getty 
Museum, Los Angeles, Ms. 80a (2005.26), verso

3	 The Nativity with the Annunciation to the Shepherds, 
Master of the Dominican Effigies, c. 1340, miniature 
on vellum, National Gallery of Art, Washington, 
D.C., Rosenwald Collection, 1949.5.87

4	 Christ and the Virgin Enthroned with Forty Saints, 
Master of the Dominican Effigies, c.1340, miniature 
on vellum, National Gallery of Art, Washington, 
D.C., Rosenwald Collection, 1959.16.2

These paintings from the Laudario have been stud-
ied in great detail to determine the pigments and paint 
mixtures used as well as the artists’ working methods. 
The illuminations in the collection of the J. Paul Getty 
Museum were extensively studied for the 2012-2013 exhi-
bition Florence at the Dawn of the Renaissance: Painting 
and Illumination 1300–1350 using point-based analysis 
techniques (XRF, Raman spectroscopy and microscopic 
examination), broadband infrared imaging (900–1700 
nm) and ultraviolet light induced visible fluorescence 
photography [34]. More recently these folios have been 
re-examined by RIS, XRF mapping (also referred to as 
scanning macro-XRF spectroscopy or MA-XRF), as well 
as point-based fiber optic reflectance spectroscopy (350–
2500 nm) for this work. The point analysis data was com-
bined with the RIS data and XRF maps to define regions 
of the data cubes where similar pigments are present. 
The results of all of these studies have been summarized 
in the Additional file  1: Table  S2. The two works in the 

collection of the National Gallery of Art have also been 
previously studied for the Colour Manuscripts in the 
Making: Art and Science conference (2016, University of 
Cambridge) and the RIS image cubes have been classified 
and labeled with the pigments determined to be present 
either from the RIS spectra and/or from the results of 
site-specific XRF and fiber optic reflectance spectroscopy 
(350–2500 nm) [25, 33].

In constructing the training spectral dataset, regions in 
the RIS cubes having the same spectral shape and known 
pigment composition were selected both within a given 
painting as well as among all four paintings. The labels of 
the training dataset represent the pigment(s) whose spec-
tral signature(s) dominate(s) the spectra (i.e., with the 
effects of the substrate and presence of ad-mixed white 
pigments included). Thus, an area containing mostly 
azurite will be described as belonging to the pigment 
category “azurite” (even if there is a small quantity of, for 
example, a white, black, or other-colored pigment), while 
an area containing a fairly equal mixture of azurite and 
lead white might be described as “azurite/white” when 
the amount of white present begins to noticeably alter 
the spectrum. As a result, the training dataset incorpo-
rates the effects of variations in paint layer thicknesses 
and mixtures that incorporate white pigments (lead 
white, chalk, etc). The only paint mixture excluded in the 
training dataset is that of the flesh. The omission of the 
flesh tones was done purposely as they represent a small 
area of the paintings and their composition is known to 
differ among the artists who painted each painting used 
for the training [34].

Figure 2a displays a representative image indicating the 
locations from which reflectance spectra were extracted 
from one of the paintings, The Nativity with the Annun-
ciation to the Shepherds. Selected areas were not aver-
aged; each spectrum was treated as an individual feature. 
In total, 25 classes (paints) were identified. These classes 
consisted of both pure pigments (where “pure” is used 
to describe paints where spectra are dominated by one 
pigment) or “mixed” pigments (where there are two pig-
ments contributing to the spectral signature). The mean 
spectra of all classes can be seen in the Additional file 1: 
Figure  S2, and represent the diversity of pigment and 
pigment mixtures observed in these paintings. A total 
of more than 300,000 individual spectra were collected 
across all four paintings.

Since not all pigments or mixtures are as abundantly 
used as others, there were several classes where a limited 
number of samples was collected (e.g. 40 green earth vs. 
61092 azurite samples per class). For the model to formu-
late general rules and not over-train on the larger classes, 
the training data were reduced to 16,683 spectra with the 
number of samples per class more evenly distributed. 
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This was accomplished by iteratively removing similar 
spectra (based on Euclidean distance as a measure of sim-
ilarity) in order to conserve the variability in the training 
spectra. Even though other distance measures (e.g. Mah-
alonobis, Hausdorff, spectral angle, etc.) could have been 
used, a simple Euclidean distance is a common metric 
for assessing spectral similarity in hyperspectral imagery 
and is used here. Visualization of the reduced number of 
spectra vs. all the spectra for a given class showed suf-
ficient variability to justify this approach. However, for 
other paintings or sets of pigments these other distance 
measures could be considered to improve separability 
and will be addressed in future work. Thus, for each class 
with more than 1000 spectra, a spectrum was selected 
at random, and the 100 most similar spectra to the cho-
sen spectrum were removed from the class. This was 
repeated until each large class was reduced significantly. 
Class sizes, model accuracy and labels can be seen in 
the Additional file  1: Table  S1. Note the lower accuracy 
of “Ochre yellow”. This is probably due to the similarity 
in spectra between yellow and orange ochre (see aver-
age spectra of both in the top left plot in the Additional 
file 1: Figure S2). Figure 2b displays the reduced number 
of spectra of brown ochre; the dotted line shows the aver-
age of all plotted spectra. The spectral variability within 
this pigment can clearly be seen in the plot. The one 
distinct outlier visible, with higher reflectance from 400 

to 550 nm, and was probably mis-labeled in the origi-
nal collected training spectra. Cases similar to this one, 
where one or more spectra in the training data may be 
incorrectly identified as belonging to a given pigment 
category, is due to the method used to extract spectra 
for the training data, wherein spectra from related areas 
were defined with the same pigment category label. The 
mean spectrum of each pigment category is plotted in 
Additional file  1: Figure  S2, and correspond well to the 
expected reflectance curve of the pigment(s) named in 
the category label.

Performance evaluation of the 1D‑CNN model
The degree of success of the 1D-CNN model was evalu-
ated in two ways. The first method was a quantitative 
model performance evaluation and examines the robust-
ness of the neural network itself. The second provided 
insight as to how well the 1D-CNN model produces 
accurate labeled pigment maps. This is done by compar-
ing the resulting maps with those generated using the 
more traditional method (i.e classification of the same 
RIS cube using ENVI-SHW followed by labeling the 
classes in terms of pigments either from RIS spectral fea-
tures or fusing the class maps with other data), described 
in this paper as truth maps.

Fig. 2  Example of building the training datasets. a Regions of interest selected in the The Nativity with the Annunciation to the Shepherds, Master 
of the Dominican Effigies, c. 1340, National Gallery of Art Miniatures 1975, no. 7, Rosenwald Collection. b The spectra of the brown ochre class 
collected from all four paintings showing the spectral variability. The black dotted line is the average spectrum for brown ochre
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Quantitative model performance evaluation
The first method, to validate the performance of the neu-
ral network on the training set created using the four 
paintings, applied 10-fold cross-validation to estimate 
model performance, with results averaged. The k-fold 
cross-validation is a method used to evaluate machine 
learning models, where the training data is split into k 
groups. The 1D-CNN is then trained on k-1 groups and 
tested on the hold-out group. This is repeated for all k 
groups and the results averaged to produce a less biased 
estimate of the model’s performance [43]. To calculate 
the results of each of the k models, mean-per-class-accu-
racy was used. This method, used when training data 
have unbalanced sets (classes with different amounts of 
training data), reports the average of the errors in each 
class, thus giving similar weight to each class and pre-
venting larger classes from dominating results. Thus the 
mean per class accuracy for each of the 10 models cre-
ated using cross-validation was averaged to calculate the 
final model performance.

The overall mean per-class accuracy (averaged across 
the 10-fold cross validation results) for the 1D-CNN was 
98.7%. Results for each pigment or mixture class can be 
seen in the Additional file  1: Table  S1. Model perfor-
mance based on this metric shows very good results for 
all classes.

Comparison of 1D‑CNN pigment labeled maps versus truth 
maps
After training, the 1D-CNN model was applied first to 
the Pentecost, Fig. 3a, another painting from the Laudario 
of Sant’Agnese, the same illuminated book from which 
the paintings used to create the training dataset were 
obtained. The output of the 1D-CNN consists of 25 
maps, one for each of the pigment classes in the train-
ing dataset. The intensity at each pixel in a given map 
is the probability of a match between the RIS spectra at 
that spatial pixel and the pigment class as determined by 
the 1D-CNN model. Each of the labeled pigment maps 
were thresholded to 0.99 or greater probability to con-
struct the composite pigment labeled map in Fig.  3d. 
This reduced the number of pigment-labeled classes from 
the possible 25 to 13. A high threshold of 0.99 was cho-
sen to reduce the number of false-positive assignments. 
In the final composite pigment labeled map, the classes 
are color coded and labels as shown in Fig. 3b. The black 
background represents spatial pixels where none of the 
25 labeled pigment classes had a probability at or above 
0.99. Inspection of the composite map and color image 
reveals not all of the pixels were assigned to a pigment 
class. Decreasing the threshold from 0.99 to 0.85, as 
shown in the Additional file  1: (Figure  S3), did assign 
unclassified areas to the correct pigments, but at the 

expense of increased false positive identifications (e.g. 
parchment classified as lead tin yellow). As noted, the 
areas of flesh were not included in the training datasets, 
thus no labels were assigned to the flesh. Nevertheless 
the majority of the painted areas have been assigned to a 
labeled pigment class.

The composite color coded pigment labeled map of the 
Pentecost obtained using the traditional methods, the 
truth map, is shown in Fig. 3c and labeled pigments found 
in these classes is given in the 1st column in Fig.  3b. A 
detailed table summarizing the information used to iden-
tify the pigments in the spectral classes found using the 
ENVI-SHW is given in the Additional file 1: Table S2. The 
colors of the labeled classes were chosen to roughly rep-
resent the color of the actual paint. The 1D-CCN model’s 
color composite map, displayed in Fig.  3d, used a color 
scheme where the same color is used as the truth map if 
pigments were the same, which can also be seen in the 
second column of Fig.  3b. Comparing Fig.  3c, d (or the 
two columns of Fig. 3b) shows that the 1D-CNN model 
correctly labeled the pigments in most of the paints. For 
example, the paints dominated by a single pigment – 
azurite, lead tin yellow, gold, ochres, red lead, vermilion, 
green earth and red lake—were all correctly labeled.

For mixed pigments the 1D-CNN model provided both 
correct and some incorrect assignments. The 1D-CNN 
model correctly labeled pixels when the degree of satura-
tion of a color varied over a fairly large range, for exam-
ple the high and medium saturated blue robes. In both 
colors, the same primary pigment, azurite, was used but 
mixed with varying amounts of lead white. For the two 
areas where ultramarine and azurite were used together, 
the lighter portion of the dome directly above Mary and 
the lighter blue robe of the apostle in the bottom right, 
the 1D-CNN model only correctly labeled the lighter 
portion above Mary, but not the very pale (unsaturated) 
robe. Interestingly, the light blue robe of the apostle at 
the bottom right of Fig. 3d identified a small feature rep-
resented by only a handful of spatial pixels as part of the 
“Red lake” pigment category (shown in pink in Fig. 3d), 
which at first glance, appears as though it might repre-
sent a miss-classification. However, after further visual 
investigation, this allocation was confirmed: in the areas 
classified as “Red lake,” reflectance spectra do indeed 
indicate that an organic red colorant may be present as a 
layer over the blue and lead white mixture to render the 
shadow folds in the robe.

The green paints of the robes proved the most chal-
lenging for the 1D-CNN model. The truth map as well 
as magnified examination of the painting shows a yel-
low green-base layer onto which a deeper green paint 
was layered, which helps define the three-dimensional 
shape of the green-robed figure at bottom center. The 
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Fig. 3  Comparison of pigment labeled maps. a Color image of Master of the Dominican Effigies, Pentecost, about 1340, The J. Paul Getty Museum, 
Los Angeles, Ms. 80, verso. Digital image courtesy of the Getty’s Open Content Program. b Table of pigment labels for the truth map (refer to 
Additional file 1: Table S2) and the 1D-CNN map. c Truth pigment map. d 1D-CNN map



Page 9 of 16Kleynhans et al. Herit Sci            (2020) 8:84 	

yellow-green base paint was found to be a mixture of 
lead tin yellow (type II), ultramarine, and likely a copper-
containing green pigment (see Additional file 1: Table S2) 
and the deeper green as a mixture of lead tin yellow with 
an unknown copper green. Neither of these mixtures is 
present in the training dataset, however visual inspec-
tion of the mean spectra of the yellow-green paints in 
the dataset indicate the best spectral match would be 
with lead tin yellow mixed with azurite, due to the weak 
reflectance maximum at ∼ 730 nm.

There are two other small details where the 1D-CNN 
provided pigment labels which prompted further inves-
tigation. These are illustrated in Fig. 4. The first concerns 
the left vertical portion of the red border. The top, right, 
and bottom part of the red outer border show a sharp 
inflection point at 564 nm, indicative of red lead. The 
RIS spectrum of the left vertical border (as pointed out 
by the green bifurcated arrow in Fig.  4a) shows a sharp 
inflection at 558 nm consistent with red lead, although 
blue shifted, but it also shows a weak reflectance peak at 
approximately 740 nm and rising reflectance starting at 
850 nm.

These results suggest the presence of a second pigment 
along the red outer border although assignment by RIS 
alone is not possible. The 1D-CNN model recognized a 
difference between the left edge and the other sides of the 
red outer border, although it labels the left edge as ochre, 
rather than red lead, azurite. Inspection of the copper 
(Cu) elemental distribution map obtained from XRF 
mapping shows that copper is associated with the blue 
azurite inner border as shown in Fig. 4c. On the border’s 
left edge, copper is present in a wider line than what is 
currently visible in the color image, and indicates azurite 
is present below the left portion of the red outer border. 
Visual inspection of the color image shows some blue 

paint is just visible at the top edge of the border (green 
arrow) (Fig. 4b). Thus, while not correctly assigning the 
pigments (since this combination of red lead and azurite 
was not in the training dataset), the 1D-CNN model did 
assign the most logical pigment based on the RIS fea-
tures, and correctly noted the distinction between this 
area and the remainder of the red lead border.

The second detail of interest is the shadowed side of the 
white square spire (Fig.  4d–f) which appears as a light 
gray blue in the color image and was labeled as “indigo” 
by the 1D-CNN model, shown in teal in detail in Fig. 4d. 
This area appears to actually contain a small amount of 
a copper-containing pigment (likely azurite, since the 
area has a blue-gray cast), as suggested by the copper dis-
tribution obtained from XRF mapping (in Fig.  4f ). This 
shadowed area was missed in the classification step for 
the truth model. Spectra from this area have an overall 
lower reflectance (by a factor of 2) and weak absorption 
features that suggest a small amount of earth pigment 
was additionally added to the white. Taken together, the 
RIS and XRF data suggests that the area may actually be a 
complex mixture of lead white, ochre, and trace amounts 
of azurite. This three-part mixture is not in the training 
set, so although the shadowed side of the spire was incor-
rectly ascribed to the indigo class, the 1D-CNN model 
distinguished a difference between this area and the rest 
of the white spire.

To further test the robustness of the 1D-CNN model a 
second painting, which comes from a Choir Book (Grad-
ual) series painted by Lippo Vanni, Saint Peter Enthroned, 
c. 1345/1350, was analyzed. Vanni, while from Sienna 
rather than Florence, is likely to have been familiar with 
the painting techniques and pigments used by the Flor-
entine artists who did the paintings for the Laudario of 
Sant’Agnese.

Fig. 4  Two details from the Pentecost. a The top left border of 1D-CNN map and the corresponding b color image and c XRF copper distribution 
map. d The white spire in the 1D-CNN map and the corresponding e color image and f XRF copper distribution map
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As in the case of the Pentecost, a pigment-labeled truth 
map was constructed from first creating classification 
maps based on RIS spectra (400 to 950 nm) using the 
ENVI-SHW algorithm and then by fusing results from 
point analysis methods in order to turn the classification 
maps into labeled pigment maps (see Additional file  1: 
Table  S3 for details). The 1D-CNN model was applied 
to Saint Peter Enthroned to determine the model’s gen-
eralizability to a painting not in the Laudario, but which 
is expected to contain similar materials. The reference 

color image, truth and 1D-CNN composite maps along 
with the color-coded pigment labels are given in Fig.  5. 
The data demonstrate that the paints dominated by a 
single pigment were correctly identified even when lead 
white was present. Specifically the areas containing azur-
ite, lead white, vermilion, and red lake were all correctly 
labeled. The areas of gold leaf, and the areas of exposed 
bole where the gold leaf is gone, were also correctly iden-
tified as gold and ochre (the primary coloring material 
of the clay bole underneath the gold), respectively. The 

Fig. 5  Comparison of pigment labeled maps. a Color image of Lippo Vanni, Saint Peter Enthroned, 1345/1350, National Gallery of Art, Rosenwald 
Collection, Washington. b Table of pigment labels for the truth map (refer to Additional file 1: Table S3) and the 1D-CNN map. c Truth pigment map. 
d 1D-CNN map
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1D-CNN model incorrectly labeled the yellow as lead tin 
yellow although the truth pigment map indicates that a 
yellow lake is present, however yellow lakes are not pre-
sent in the training dataset. The truth map shows the 
dark modeling of the richly decorated red cloth over 
St. Peter’s throne was painted with vermilion while the 
lighter parts were painted with a mixture of vermilion 
and red lead. The 1D-CNN model correctly labeled the 
vermilion. However, the mixture was labeled as only con-
taining red lead because these areas had sufficient red 
lead character to differentiate them from pure vermilion, 
since the mixture was not in the training set.

There are three sets of mixed pigments in Saint Peter 
Enthroned, two greens and an orange-red. As shown in 
the truth map, the green paints (Fig. 5c) are made from 
a yellow lake with azurite denoted with a lighter green, 
and with a yellow lake, azurite, and indigo for the cooler, 
darker green. The labeled pigments returned from the 
1D-CNN model (Fig. 5d) returned two greens composed 
of a yellow mixed with a blue pigment and the model 
returned the correct blue pigment in both cases. How-
ever, since no mixture of a yellow lake with these two 
blue pigments existed in the training data, the model gave 
as the best match lead tin yellow mixed with the specific 
blue pigment. This is not surprising as the spectral shape 
is dominated by the blue pigment present. The labeled 
composite truth map shows that the red border contains 
a mixture of red lead and vermilion, just like the lighter 
red portion of the cloth over the throne. The 1D-CNN 
model correctly identified these two pigments individu-
ally in the border, identifying primarily red lead on the 
right side of the image, and vermilion on the far left. The 
model did not classify them as a mixture since there was 
no mixed red lead and vermilion class in the model. This 
result reinforces the notion that identification from the 
model can only be as exact as the training data. As such, 
these results will always need to be presented with some 
indication as to the limits of interpretability. However, as 
more paintings are studied, the training set can be aug-
mented to develop a more robust solution.

Discussion
The objective of this research was to determine if a data 
driven, rather than a physics-based, solution to pigment 
labeling of reflectance spectra would be sufficient. The 
motivation for testing this was not because physics-based 
solutions to intimate mixing are not robust enough, but 
rather because obtaining the information to implement 
the physics models are challenging due to the complex-
ity of paintings. Specifically, obtaining the optical proper-
ties of the pigments used, the optical thickness of paint 
layers present and accounting for the possibility of glazes 
over the paint layers pose difficulties. While destructive 

micro sampling can provide such information, even well-
studied paintings are sparsely sampled and no robust 
non-invasive methods exist currently to obtain these 
parameters across the surface of a painting. The data-
driven solution explored here gets around this problem 
but requires a large pigment labeled dataset, as all learn-
ing frameworks do.

The approach taken here is to constrain the size of the 
training dataset by developing them for specific artistic 
schools, which are often defined by a rough set of pig-
ments and subset of mixtures and more specific painting 
processes. That is, only subsets of mixtures and layer-
ing are expected within these schools instead of all pos-
sible combinations. Finally, rather than attempting to 
build a robust training dataset by making contemporary 
paint-outs, the central idea is to utilize well-character-
ized historic paintings to define a number of classes and 
encompass the needed diversity, while simultaneously 
ensuring the use of historic pigments, supports (such 
as parchment), and paintings grounds. This approach 
is inherently attractive because it leverages the large 
amount of existing scientific data on particular paintings, 
suggesting that enough truth information is available to 
allow the creation of appropriate training datasets for 
a number of artistic schools. Where the predictions of 
labeled spectra break down using this approach, the data-
set can be refined, but the “failures” are likely new areas 
worthy of further study.

The limitations of this approach are twofold. First, it 
cannot be expected to work well on all paintings, given 
that many exist at the boundaries between schools 
of artistic practice. However, the understanding of a 
given artist or artistic school does not require a rigor-
ous understanding of each set of work in the school, but 
more often the common elements between them and 
where they differ. The approach proposed here, even 
with its limitations, is consistent with these goals. The 
second limitation is that while a physics-based model 
can give concentrations of the pigments, the data-driven 
approach to directly label pigments proposed here will 
not. Nor will the proposed data-driven approach provide 
quantitative information about the mixtures present nor 
find all the pigments present. Physics-based models are 
better suited for these goals. However, in the conserva-
tion and art historical fields there has been limited need 
for such detailed information, except for a small class of 
paintings where the degradation over time has resulted 
in large imbalances in the color appearance of specific 
pigments. In these cases, the focus is typically on get-
ting quantitative information for one or two specific pig-
ments based on highly detailed studies, not of the whole 
painting. For the vast majority of studies, then, the lack of 
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quantitative data is unlikely to be a hindrance to uptake 
of the method.

In this paper the proposed data-driven approach for 
the analysis of RIS image cubes was applied to four well 
studied paintings from the same book, which could be 
well-described by 25 pigment labeled classes, were suffi-
cient to build the training dataset for 14th century paint-
ings found in illuminated books from the early Italian 
Renaissance by artists in or near Florence. The trained 
1D-CNN model was then applied to a painting from the 
same book that contained the four paintings used for 
training, as well as a painting from a different book and 
artist who worked outside of Florence in Siena. Results 
were encouraging when compared with truth which was 
obtained by labor intensive analysis by expert users. This 
makes it likely to become a valuable addition to the work-
flow of museum-based scientists and conservators.

For both of the tested paintings, the 1D-CNN model 
correctly labeled all but one of the classes in which a sin-
gle pigment dominated the reflectance spectra. Of the 
28 truth pigment allocations across both paintings (17 
in the Pentecost and 11 in the Saint Peter Enthroned), the 
1D-CNN model correctly identified 19. However, of the 
9 incorrectly classified pigments/mixtures, 7 were not 
part of the training dataset. When these incorrect (but 
not surprising) classifications are discounted, the model 
misclassified only 2 classes. These results point to a limi-
tation of the 1D-CNN model, as with most artificial intel-
ligence models, that when a pigment is encountered for 
which the model was not trained on, for example the 
yellow lake that was labeled as lead tin yellow, the model 
fails. The model handles well cases where pure pigments 
were mixed with varying amounts of lead white, and thus 
appears to be robust in situations when the saturation is 
varied, so long as these cases are in the training data. The 
model also handles the combination of ultramarine and 
azurite except for the case when the pigment concentra-
tion was low and the color very light. Between the two 
paintings there were four green paints made from mix-
tures. In each case, the 1D-CNN model labeled the greens 
partially correctly, owing to not having the right mixtures 
in the training data. Overall, the 1D-CNN model handled 
mixtures it was trained for well, and found matches that 
were spectrally reasonable for those it was not trained 
for. This illustrates both a benefit and risk. While the risk 
is clear (like all data-driven models, there is chance for 
model predictions to be wrong), the benefit is less obvi-
ous, but is particularly valuable in the field of art analy-
sis. Fundamentally, incorrect assignments provide a place 
to start from to improve the training data. But it also 
provides an incentive for further research. In this work, 
the case where the model was wrong, such as assigning 
an ochre where red lead was expected in the red outer 

border in Pentecost, caused us to look more closely at 
this area, making close comparisons to other data and 
reexamining the painting itself, to find that the left edge 
of the border was painted over what was an “error” made 
by the artist while painting the inner azurite blue border. 
Hence such errors can be informative, particularly in 
cases where the examination of an object with RIS is the 
first step of several analysis methods. This is, indeed, the 
case in many cultural heritage studies.

Improving the training dataset is an iterative process 
and one that would improve the performance here. The 
challenge is to look at more complex mixtures and lay-
ers that arises from inherent variability of artists’ tech-
nique – including idiosyncratic mixtures and/or layering 
methods that one artist may apply – which may exclude 
the possibility of ever having a training set that can 
encompass all possible pigment mixtures. For example, 
the artists considered in this work employ different pig-
ments and/or subtly different methods of painting flesh 
tones, depending on medium (e.g. painting on parch-
ment vs. panel paintings), size, and/or moment in their 
artistic development; the extent to which this technique 
varies object-to-object and artist-to-artist continues to 
be a subject of study [44, 34]. The expected variation of 
flesh tone painting techniques suggests that, even within 
a single artistic tradition, some natural variability may 
make some paint compositions more difficult to identify 
than others, directly linked to whether an example is pre-
sent in the training data. As noted in the results section, 
three-component mixtures similarly find use, and the 
lack of them in the training data provided one limit to the 
overall accuracy of the 1D-CNN predictions. Therefore, 
adding more unique mixtures will undoubtedly improve 
the results of the model. For example adding examples 
of the fleshtones represented in the manuscripts studied 
here.

To extend the model beyond this artistic tradition, of 
course, will require additional extensions: for example, 
a similar model could reasonably be built to examine 
19th or 20th century oil paintings, but would necessarily 
require a different training dataset, and be subject to the 
same challenges as demonstrated here for 14th century 
illuminated manuscript paintings.

Even without these extensions, however, the poten-
tial to rapidly classify pigments in a collection of works 
of art from the same painter (or painters from the same 
general era and style), based on a model trained on a 
few well characterized paintings, creates the opportu-
nity for classification and analysis of an entire collec-
tion within a short period of time and with less need 
for a trained expert user to supervise the initial labeling 
process of an unknown painting. As such, the 1D-CNN 
model provides an excellent first-pass analysis to help 
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guide the researcher, and/or identify areas deserving 
of more focused study by an expert user or which will 
require additional detailed analysis by other analyti-
cal techniques. An example of this kind of highlighting 
of areas of interest include the initially painted portion 
of the border, and the shading of the spires in the Pen-
tecost from the Laudario. This application of a 1D-CNN 
model, therefore, is expected to help conservators and 
conservation scientists more rapidly evaluate the materi-
alty of objects under their care, allowing more rapid deci-
sion-making with respect to treatment and preservation 
options, as well as identifying areas of ongoing interest or 
concern.

Materials and methods
Reflectance imaging spectroscopy data collection
The RIS data used for creating the training dataset con-
sisted of 209 spectral bands that ranged from the visible 
to near infrared (400 to 950 nm). The resulting image 
cube (2 spatial and 1 spectral dimension) were calibrated 
to apparent reflectance by subtracting a dark image from 
the collected reflectance data in digital counts, and divid-
ing it by the illumination irradiance. The spectral compo-
nent of the reflectance spectrum at each pixel was used as 
input features (model input data) to the 1D-CNN model.

Network architecture
The 1D-CNN consists of 4 hidden layers. The architec-
ture is displayed in Fig. 6. This was chosen after experi-
mentation with different number of hidden layers, filters 
and kernel sizes did not produce better results. Exhaus-
tive modelling was not done due to the very high model 

accuracy achieved with the chosen parameters. The input 
layer receives the initial data, which is the individual 
(labeled) spectra collected from the studied paintings. 
The first two hidden layers have two 1D convolutional 
layers with respectively 64 and 32 filters and kernel sizes 
of 5 ×  5 and 3 ×  3. This is followed by max pooling, 
where the hidden layers are down-sampled to reduce 
their dimensionality, keeping the maximum output of 
each second feature. Two fully connected (dense) layers 
of sizes 100 and 25 form the last two hidden layers. Each 
hidden layer uses the rectified linear unit (ReLU) activa-
tion function f (x) = max(0, x) , thus retaining only the 
positive part of its input. The final output activation func-
tion, Softmax, takes the output values and changes them 
to probabilities between 0 and 1 with f (s)i =

esi
�C
j e

s
j

 where 

si is the score inferred by the neural net for each class in 
C. For this study, C = 25.

The performance of the model was measured with cat-
egorical cross-entropy loss (log loss) function defined as 
CE = −�C

i tilog(si) , where ti is the ground truth (label), 
and si the scores of the model for each class. For the cat-
egorical cross-entropy loss calculation (compared to 
binary cross-entropy), each label was coded as a one-hot 
vector since the neural network requires the label to be 
numeric. A one-hot vector is a zero vector the length of 
the number of classes, with the class represented as a 1 at 
the specific label number.

The model was trained with batch sizes of 50, and eval-
uated on a validation set of 10% of the training data. The 
training started with a learning rate of 0.01, which was 
decreased if after 4 epochs (cycle through full training 
dataset) the validation loss did not decrease. The number 

Fig. 6  The network architecture of the 1D-CNN model
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of epochs were set to 30. The model used the stochastic 
gradient descent optimizer to minimize the loss function. 
The neural network was coded in Python using Tensor-
Flow’s Keras library [45].

Performance evaluation calculation
The 1D-CNN model accuracy was measured using the 
individual per-class results from 10-fold cross valida-
tion. Thus the overall accuracy of the model was calcu-
lated by averaging the mean-per-class results for each 
of the 10 cross-validation results. The mean-per-class 
accuracy measure is used when there are unbalanced 
sets (classes with different volumes of data).

Three additional classification methods were tested 
to compare the 1D-CNN model with alternative mod-
els commonly used for such datasets, namely 1. a 
Multilayer Perceptron (MLP) [46], 2. Support Vector 
Machine with radial basis kernel (SVM) [47], and 3. 
Spectral Angle Mapper (SAM) to assign the class with 
the smallest angle between the spectral library and each 
spectrum in the image. The 1D-CNN outperformed the 
others by 1.3% (MLP), 2.1% (SAM), and 6.4% (SVM) 
mean per-class accuracy respectively.

Point‑based fiber optic reflectance spectroscopy
FORS spectra were collected in a non-contact con-
figuration using an ASD Field Spec3 (Malvern Pana-
lytical) which is sensitive from 350–2500 nm. The 
collection fiber is oriented at approximately 90 degrees 
to the painting surface, resulting in a collection spot 
size approximately 3 mm in diameter, and the illumina-
tion source is held approximately 10 cm from the sur-
face at a 45 degree angle. The total acquisition time was 
less than 6 seconds per spot. The light level was approx-
imately 5000 lux.

Scanning XRF spectroscopy
Scanning macro-XRF spectroscopy is a non-contact 
chemical imaging technique which captures informa-
tion about the elemental composition of a two-dimen-
sional area. In many cases, the pigments, metals, and 
other materials present in a work of art can be inferred 
from the elemental composition. Since the technique 
is X-ray-based, the elemental distributions often cap-
tures both surface and sub-surface information simul-
taneously. In macro-XRF-derived element distribution 
maps, brighter areas represent higher signal from an 
element. In this study, scanning XRF spectroscopy 
was done at the Getty Conservation Institute (GCI) 

using a Bruker M6 Jetstream (Rh tube, operated at 50 
kV/400µA , 450µm spot size, 440µm sampling and 
a dwell time of 18 ms/pixel). A corrected excitation 
spectrum of the instrument was measured by Timo 
Wolff and data processing utilized the PyMCA and 
DataMuncher software suites. [4, 48, 49] The total area 
scanned on the Pentecost (not shown) was 316× 404 
mm; details shown in Fig. 4 show spatial subsets of this 
scan, with histograms stretched to emphasize weak 
features.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4049​4-020-00427​-7

Additional file 1: Figure S1. The four paintings from the Laudario used to 
create the training dataset for the 1D-CNN model. a The Nativity with the 
Annunciation to the Shepherds, Master of the Dominican Effigies, c. 1340, 
miniature on vellum, National Gallery of Art, Washington, D.C., Rosenwald 
Collection, 1949.5.87, b The Ascension of Christ, Pacino di Bonaguida, 
about 1340, Tempera and gold leaf on parchment. Getty Museum, Los 
Angeles, Ms. 80a (2005.26), verso, c The Martyrdom of Saint Lawrence, 
Pacino di Bonaguida, about 1340, Tempera and gold leaf on parchment. 
Getty Museum, Los Angeles, Ms. 80b(2006.13), verso ( d) Christ and the 
Virgin Enthroned with Forty Saints, Master of the Dominican Effigies, c.1340, 
miniature on vellum, National Gallery of Art, Washington, D.C., Rosenwald 
Collection, 1959.16.2. Digital images of (b), (c). Table S1. Summary of per 
class accuracy for the 1D-CNN model. The 25 pigment/mixture classes 
and their total class size is given along with the per class accuracy using 
10-fold cross validation.) courtesy of the Getty’s Open Content Program. 
Figure S2. The average reectance spectra for each of the pigment labeled 
classes in the training dataset used for the 1D-CNN model. Figure S3. 
The pigment labeled map created by using a lower threshold (0.85) in the 
1D-CNN. Table S2. Summary of analyses, the Pentecost. Note that the RIS 
features listed are those identified by an expert user following manual 
data exploration. When available, fiber optic reflectance spectroscopy 
(FORS) and Raman analysis may provide additional information about the 
total chemical composition of each area. However, not all pigments identi-
fied are discernible in the RIS data cube on which the 1D-CNN is applied. 
Therefore, a simplified “pigment class” column notes the materials that 
should be identified in the paint by this technique. Table S3. Summary of 
analyses, Saint Peter Enthroned. Note that the RIS features listed are those 
identified by an expert user following manual data exploration. When 
available, fiber optic reflectance spectroscopy (FORS) analysis may provide 
additional information about the total chemical composition of each area. 
However, not all pigments identified are discernible in the RIS data cube 
on which the 1D-CNN is applied. Therefore, a simplified “pigment class” 
column notes the materials that should be identified in the paint by this 
technique.
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