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Abstract 

Traditional methods for ancient mural segmentation have drawbacks, including fuzzy target boundaries and low 
efficiency. Targeting these problems, this study proposes a pyramid scene parsing MobileNetV2 network (PSP-M) by 
fusing a deep separable convolution-based lightweight neural network with a multiscale image segmentation model. 
In this model, deep separable convolution-fused MobileNetV2, as the backbone network, is embedded in the image 
segmentation model, PSPNet. The pyramid scene parsing structure, particularly owned by the two models, is used to 
process the background features of images, which aims to reduce feature loss and to improve the efficiency of image 
feature extraction. In the meantime, atrous convolution is utilized to expand the perceptive field, aiming to ensure 
the integrity of image semantic information without changing the number of parameters. Compared with traditional 
image segmentation models, PSP-M increases the average training accuracy by 2%, increases the peak signal-to-noise 
ratio by 1–2 dB and improves the structural similarity index by 0.1–0.2.
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Introduction
With the continuous development of computer soft-
ware and hardware, as well as the gradual deepening of 
social informatization, cultural relic protection institu-
tions have introduced advanced digital technology to 
iteratively update traditional technology, while improving 
the work efficiency of relevant workers, reducing work-
loads and enhancing the values of traditional culture. 
As a traditional cultural carrier, ancient murals play an 
important role in Chinese culture, and their contents 
reflect the charm of traditional Chinese culture from 
multiple aspects, such as the geographical environment 
and local traditions and customs. However, due to its 
long history, traditional Chinese murals, represented by 
Dunhuang murals and Liaoyang Han Tomb murals, have 
experienced serious damage artificially and by the natural 

environment. As a consequence, only a small number of 
murals have been completely preserved, and most murals 
are confronted with a series of problems, such as con-
tent defects and color loss, which pose a great threat to 
ancient mural protection.

The first step for mural image digital protection is to 
understand the image. Influenced by traditional cul-
ture, ancient Chinese murals are characterized by bright 
colors and rich content. Analyzing the image is one of 
the most difficult problems in Chinese mural image pro-
tection. Image segmentation is an important method 
for image understanding. This technique can divide an 
image into several noninteractive regions according to 
grayscale, color and texture. The consistency or simi-
larity between image features can then be mapped out 
through these regions. As different regions have differ-
ent exhibitions, this technique calibrates them based on 
the discontinuity of the gray levels at their boundaries to 
achieve image analysis. After image segmentation, the 
image elements in the murals are classified to determine 
the specific meaning of each image element. When all the 
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elements of the murals are clear, a deep understanding of 
the connotation and historical value of the images can be 
achieved, thereby promoting the development of tradi-
tional culture in contemporary times. However, to date, 
no image segmentation models can be perfect enough 
to use universally, and therefore, proper model selection 
plays a crucial role in ancient mural image segmentation.

Currently, ancient image segmentation remains in 
the stage of the use of traditional methods, and tech-
niques from the field of deep learning have seldom been 
involved. Most of the traditional methods can process 
gray images, but they are not applicable for ancient mural 
images, whose colors are abundant. Some of the com-
monly used traditional methods are as follows: The Fuzzy 
C-means (FCM) [1] is a clustering algorithm in the field 
of machine learning. Its principle is to enable the target 
function to maximize the similarities among the objects 
of the same cluster, while also reducing the connections 
among the different clusters. This algorithm has been 
widely applied, and a related mature theoretical system 
has been formed. However, when used for ancient mural 
image segmentation, the FCM does not take spatial infor-
mation into consideration, and it is sensitive to noise 
and grayscale unevenness. In addition, it is influenced 
by sample imbalance, leading to differences between the 
segmented samples and the target samples. Although the 
fusion of wavelet frames [2, 3] and particle swarm opti-
mizers [3] with the FCM is able to reduce calculation 
complexity and the principles behind them are simple 
and easy to carry out, these fusion methods are likely to 
cause the loss of the diversity of image elements, there-
fore resulting in local optimization of the segmented 
image. Otsu [4] is a modified threshold-based algorithm. 
The basic idea behind this algorithm is that image data 
is classified according to thresholds. Compared with the 
FCM, Otus has the virtue of a lower probability of pixel 
errors, but it struggles with higher calculation complex-
ity and a larger amount of computation. K-means [5, 6] is 
another widely applied unsupervised learning algorithm. 
Its working principle is as follows: The K number of clus-
ter centers is selected for classification according to the 
image pixel, and then the clustering centers are redemar-
cated until the positions of the centers do not change 
or the set number of iterations is reached. The draw-
backs of this algorithm are obvious. First, the K value 
is artificially selected; the value is influenced by subjec-
tive factors. Second, after the evaluation function of the 
algorithm converges, the clustering is complete. During 
this process, continuous iteration is required, and the 
outcomes obtained can only represent locally optimized 
outcomes, whereas the effect of global segmentation is 
poor. Graph cuts [7] and its modified algorithm Grab 
Cut [8] are also two commonly used methods for mural 

image segmentation. Both algorithms adopt one-time 
minimization and iterative minimization to optimize 
the parameters of the gray histogram based on the target 
and background of the Gaussian mixed model (GMM) 
[9], thereby achieving a satisfactory segmentation effect. 
However, for ancient mural images whose composition 
is complex, the segmentation outcomes of both algo-
rithms are poor. In addition, if the user specifies a pixel 
as the target, the segmentation outcomes of both algo-
rithms will be affected. Machine learning methods can 
be divided into generation and discrimination methods, 
which correspond to generation models and discrimina-
tion models, respectively. Among generation models, the 
most popular is generative adversarial networks (GANs) 
[10]. GANs have been widely adopted for image segmen-
tation because they do not need Markov chain repeated 
sampling or require inference in the learning process. 
These features successfully evade the difficult probabil-
ity problem of pixel approximation calculation. However, 
GANs also have disadvantages that cannot be ignored. 
First, the GAN network is difficult to train because it has 
no loss function, and therefore, it is difficult to determine 
whether progress has been made during the training pro-
cess. Furthermore, GAN may collapse in the learning 
process, and the generator may begin to degrade, always 
generating the same sample points and cannot continue 
learning. These disadvantages make the experiment una-
ble to continue. The mean shift [11] algorithm is based 
on the mean shift, and it is essentially a kernel density 
estimation algorithm. The drawback of this algorithm is 
that its running speed is low. It is only applicable for the 
feature data point set with established standard features, 
and in the meantime, it is likely to have images other than 
the target or miss some targets.

In recent years, the rapid development of deep learn-
ing has changed the previous manner where machine 
learning describes image features. It utilizes a neural 
network system to combine the low-level features of an 
image to form abstract high-level features. Addition-
ally, it uses these features to represent the attribute class 
of image elements and to discover the representation of 
the distribution feature of the data. Through layer-by-
layer feature transformation, it transforms the feature 
representation of the sample in the original space to a 
new feature space, thereby simplifying image segmenta-
tion and classification prediction. In the field of image 
segmentation, the frequently used models include fully 
convolutional networks (FCNs) [12], segment networks 
(SegNet) modified based on the FCN [13] and a Deep-
Lab series of networks proposed by Chen et al. [14, 15]. 
China is a country with a long history. However, research 
on ancient Chinese mural image segmentation is rare. 
Even among the small number of reported studies, most 
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focus on the exploration of the traditional segmentation 
methods and fail to deeply explore the adaptability of 
semantic segmentation models based on deep learning in 
mural segmentation neighborhoods. In addition, most of 
the segmentation objects are single channel gray images, 
which has certain limitations on RGB images.

According to the complex composition of ancient 
mural images, as we leverage the powerful learning 
capacity of the deep learning network, we propose a new 
model that can be applied in image segmentation for 
ancient mural images, the pyramid scene parsing Mobile-
NetV2 Network (PSP-M), by fusing a deep separable 
convolution network with the spatial pyramid pooling 
modules of the scene parsing model, PSPNet [16]. The 
advantage of the PSP-M lies in its fusion of a spatial pyra-
mid structure with multiscale image information, which 
enables it to be applicable for feature extraction from 
ancient mural images. In this model, the deep separable 
convolution network used is MobileNetV2 [17–19]. As a 
typical lightweight neural network, MobileNetV2 is the 
most representative convolution network containing a 
deep separable structure. The utilization of MobileNetV2 
for feature extraction improves the efficiency for mural 
image segmentation and reduces the influence of hard-
ware constraints on segmentation. The pyramid pooling 
structure in the PSP-M network connects the generated 
different features smoothly onto a fully connected layer 
for information extraction from different regions of the 
image. In addition, we introduce the loss function, Dice 
loss function [20], for multipoint analysis of the image 
region, which reduces the impact of sample imbalance 
on the outcomes of mural image segmentation, and 
therefore, effectively overcomes the drawbacks of the 
FCM algorithm. The employment of convolutional neu-
ral networks for image feature extraction eliminates the 
influence of artificial factors in the K-means algorithm 
and graph cut algorithm on experimental outcomes. Fur-
thermore, PSPNet has the virtue of global priority, which 
contains information at different scales from different 
subregions, and therefore, it outperforms the K-means 
and graph cut in terms of segmentation effect.

Methods
Background theories
Atrous convolution
Image feature extraction by the PSPNet involves the 
use of atrous convolution [21]. The convolution opera-
tion is a process of image feature extraction, and the 
number of convolution kernels determines the number 
of extracted features. The operation principle is that a 
mathematical operator generates the third function 
based on two functions. FCN, a frequently used image 
segmentation network, utilizes a pooling layer and a 

convolution layer to expand the perceptive field, and in 
the meantime, the size of the feature map is reduced, 
which is recovered using the upsampling method. How-
ever, the recovery process can cause a loss of accuracy. 
To solve this problem, the concept of atrous convolu-
tion is proposed. The new convolution method is a 
modification of the traditional convolution method, 
where the concept hole is introduced. The convolu-
tion treats the output feature map y as the dependent 
variable and the corresponding independent variable 
x as the input feature map. Parameters that influence y 
include the convolution kernel w and the dilation rate 
r. If a position on the feature map y is defined as i, the 
equation can be obtained as follows:

The atrous convolution performs sampling on the orig-
inal graph, and the sampling frequency is closely related 
to the dilation rate. When the dilation rate is = 1, the 
information contained in the original graph can be com-
pletely preserved, without information loss, and under 
such a condition, the convolution operation is considered 
the standard convolution operation. A dilation rate > 1 
indicates that sampling is performed with an interval of 
dialation rate-1 pixels on the original image. For example, 
for a 3 × 3 convolution, when the dilation rate is set at 1, 2 
and 3, the obtained images can be seen in Fig. 1a–c.

As shown in Fig.  1, when the dilation rate is 1 for a 
3 × 3 convolution, the convolution kernel can be con-
sidered a common convolution with a size of 3 × 3; 
when the dilation rate is 2, the convolution kernel turns 
to 5 × 5; and when the dilation rate is 3, the convolution 
kernel becomes equivalent to a 7 × 7 convolution ker-
nel. The size of the equivalent convolution kernel of the 
atrous convolution Ki is related to the atrous convolu-
tion kernel K as follows:

where d represents the hole number. If the product of 
the strides of all previous convolutions (except for the 
current layer) is represented as Si, then the stride of the 
convolution layer refers to the number of rows and col-
umns in each sliding process of the convolution kernel. 
The equation can be obtained as follows:

If RFi+1 represents the current perceptive field and 
RFi represents the perceptive field of the preceding 
layer, the equation can be obtained as follows:

(1)y[i] =
∑

k

x[i + r · k]w[k]

(2)k
′

= k + (k − 1)× (d − 1)

(3)Si =

i
∏

i=1

Stridei
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Based on Eqs. (2), (3) and (4), with kernel = 3 and 
stride = 1, atrous convolutions are consecutively performed 
at dilation rats of 1, 2 and 4 [22], and the receptive fields 
of the first, second and third layers are 3 × 3, 7 × 7 and 
15 × 15, respectively.

The special parameter of atrous convolution, the dilation 
rate, defines the distance between values when the convo-
lution kernel processes data. It increases the receptive field 
of the convolution kernel while keeping the number of 
parameters unchanged, which ensures that the size of the 
output feature map remains unchanged.

Deep separable convolution
Deep separable convolution was first proposed in the 
MobileNetV1 framework [23], which involves two dimen-
sions, i.e., space and depth, simultaneously. Its operation 
contains two parts, i.e., depthwise convolution (DW) and 
pointwise convolution (PW). The workflow of deep separa-
ble convolution is shown in Fig. 2.

Figure 2a shows the input channels of the standard con-
volution, Fig.  2b shows the DW convolution for different 
channels, and Fig. 2c shows the PW fusion of the convolu-
tion results. If the size of the input feature map is defined at 
DF × DF × M and that of the output map is DF × DF × N, the 
amount of calculation of standard convolution DK × DK can 
be calculated as follows:

In deep separable convolution, the amount of calculation 
of DW is as follows:

(4)RFi+1 = RFi +
(

k
′

− 1
)

× Si

(5)DK × DK ×M × DF × DF × N

(6)DK × DK ×M × DF × DF

and the amount of calculation of PW is as follows:

Therefore, the total calculation amount of the deep sep-
arable convolution is as follows:

The ratio between the deep separable convolution and 
the standard convolution can be calculated as follows:

Under the conditions of the size of the convolution 
kernel of 3×3 with a large number of channels N, deep 
separable convolution decreases the calculation amount 
by 90% compared with standard convolution. Given the 
same number of parameters, the neural network with 
deep separable convolution possesses a deeper network 
structure, which can improve efficiency without notice-
ably decreasing accuracy.

To better show the workflow of the deep separable 
network, a three-channel image at 5 ×5 pixels is intro-
duced, and the convolution process is shown in Fig. 3. 
As shown in Fig.  3, during convolution, each convo-
lutional kernel is responsible for a channel, and each 
channel is convoluted by only one convolutional kernel. 
Convolution is operated on a two-dimensional plane. 
First, one-time convolution is operated, and the num-
ber of convolutional kernels is the same as the number 
of channels of the preceding layer. After the operation, 
the three-channel image forms three feature maps. In 

(7)N ×M × DF × DF

(8)
DK × DK ×M × DF × DF + N ×M × DF × DF

(9)

DK × DK ×M × DF × DF + N ×M × DF × DF

DK × DK ×M × DF × DF × N

=
1

N
+

1

D
2
K

Fig. 1  Hole convolution kernel variation graph. a Dilation rate (r) = 1. b r = 2. c r = 3
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Fig. 3a, the process is illustrated. The input is an image 
in RGB format, which is transformed into a feature map 
through filter convolution. In the region designated by 
Fig. 3a, a filter only contains a kernel of size 3×3. After 
convolution, the obtained number of feature maps is 
the same as the channel number of the input layer, and 
therefore, feature maps are not expanded in number. 
Furthermore, this operation convolutes each channel of 
the input layer independently and does not effectively 
use the feature information of different channels in the 

same spatial position. Therefore, pointwise convolution 
is required to combine the feature maps to form new 
feature maps (Fig. 3b). The operation for pointwise con-
volution is very similar to that of conventional convolu-
tion, and the size of its convolutional kernel is 1 × 1 × 
M, where M represents the number of channels of the 
preceding layer. Therefore, the convolution operation 
at this step weighs and combines the previous feature 
maps in the depth direction to generate new feature 
maps. After pointwise convolution, similarly, four 

Fig. 2  Schematic diagram of deep separable convolution. a Standard convolutional filters. b Depthwise convolutional filters. c 1 × 1 convolutional 
filters. A deep separable convolution is the result of the fusion of a depthwise convolution and a 1 × 1 convolution
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feature maps are output. Although the output dimen-
sion is the same as that of conventional convolution, 
the total calculation amount is one-third that of con-
ventional convolution.

MobileNetV2 network
The proposal of the MobileNetV2 convolutional neu-
ral network aims to solve problems, such as an exces-
sively large convolutional neural network and insufficient 
hardware training during the image model training pro-
cess. It is an important way for deep learning models to 
release the memory limitation of the hardware deployed 
at the mobile terminal. In addition, it is another impor-
tant invention following lightweight neural convolution 
networks, such as squeeze networks (SqueezeNet) [24], 
shuffle networks (ShuffleNet) [25] and Xception [26]. The 
core part of MobileNetV2 is the deep separable network.

Based on the first-generation lightweight network 
mobile network vision 1 (MobileNetV1), the concepts 
of inverted residuals and linear bottlenecks are intro-
duced into MobileNetV2 [27]. As a DW convolution can-
not change the number of channels, feature extraction 
is restricted by the number of input channels. Inverted 
residuals and linear bottlenecks take low-dimensional 
compression as the input, expand it to high dimensions, 
and then filter it through lightweight depth convolu-
tion. The obtained features are projected through linear 
convolution into low dimensions for representation. The 

network structure of MobileNetV2 is summarized in 
Table 1.

In each sequence, there is a stride at the first layer, and 
the strides of the remaining layers are all 1. All spatial 
convolutions involve a convolution kernel with a size of 
3 × 3. Each bottleneck contains three parts, i.e., expan-
sion, convolution and compression. Each row describes 
one or multiple sequences with n repetitions. Within each 
sequence, all layers contain the same number of output 
channels. MobileNetv2 allows us to considerably reduce 

Fig. 3  Operational principle of a deep separable network. a Depthwise convolution. b Pointwise convolution. The input is a three-channel color 
image. The image undergoes depthwise convolution (a) to obtain a feature map (maps*3) on the two-dimensional plane, which further undergoes 
pointwise convolution (b) to form a feature map (maps*4). This treatment aims to effectively take advantage of different channels to obtain the 
features at the same spatial position

Table 1  MobileNetV2 network structure

t is the expansion factor, c represents the number of output channels or the 
number of convolution kernels of the concerned layer, n is the number of 
repetitions of the convolution layer, and s is the stride, which represents the 
moving length of the convolution kernel

Input Operator t c n s

2242 × 3 conv2d – 32 1 2

1122 × 32 bottleneck 1 16 1 1

1122 × 16 bottleneck 6 24 2 2

562 × 24 bottleneck 6 32 3 2

282 × 32 bottleneck 6 64 4 2

142 × 64 bottleneck 6 96 3 1

142 × 96 bottleneck 6 160 3 2

72 × 160 bottleneck 6 320 1 1

72 × 320 conv2d 1 × 1 – 1 280 1 1

72 × 1 280 Avgpool 7 × 7 – – 1 –

1 × 1 × 1 280 conv2d 1 × 1 – k –
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memory occupation in the reasoning process through 
incompletely materialized intermediate tensors. When 
applied to mural segmentation, it can reduce the demand 
for main memory access in most designs of embedded 
hardware.

PSP‑M model
PSPNet uses a residual network (ResNet) as its grass-
roots network [28]. The original PSPNet model employs 
ResNet and atrous convolution to extract the feature map 
of an image and uses a pyramid scene parsing network 
to embed scene information that is difficult to parse by 
a computer in the prediction framework, thereby com-
pleting the calibration for appointed image regions and 
achieving a satisfactory semantic segmentation effect. 
With ResNet as the grassroots network, the PSPNet 
model exhibits satisfactory training performance. With 
the increase in network depth, however, the extra prob-
lems of optimization difficulty increase the complexity of 
the segmentation model and restrict the employment of 
the model at the mobile terminal. To solve this problem, 
we integrate the lightweight neural network with a deep 
separable structure MobileNetV2 in the PSPNet model. 
This design greatly reduces the number of parameters in 
the network and increases the adaptability of computer 
hardware. The modified model is shown in Fig. 4.

In the proposed model, the image feature extractor 
ResNet (residual convolution neural network; indicated 
by (1) in Fig. 4) is changed to a lightweight convolution 
neural network for the extraction of the feature map from 

the input image. All output images are three-dimensional 
tensor RGB images, whose resolutions are 224 × 224. A 
deep separable convolution network is used to extract the 
feature pixels of the mural. With one convolution kernel 
corresponding to the convolution of one channel, convo-
lution calculation is performed for each channel in the 
input layer. The number of channels of the feature map is 
equivalent to that of the input layer. Afterward, the previ-
ously processed features experience weighted combina-
tions through point convolution in the depth direction. 
The channels are transformed. The transformed feature 
map undergoes dilated convolution (dilation rate = 3) to 
obtain feature map (a). Till now, the backbone work is 
completed. A new feature map (indicated by (a) in Fig. 4) 
is generated, and the calculation amount of the neural 
network is reduced.

The proposed model changes the way that the convolu-
tion network in the traditional model is activated by the 
ReLU function in the low-dimensional space [29]. ReLU 
is capable of saving the complete information of the input 
manifold only when the input manifold is located in the 
low-dimensional subspace of the input space. According 
to Tang et al. [26], a linear layer can prevent damage to 
image information caused by nonlinear functions. There-
fore, in the proposed PSP-M model, linear transforma-
tion is used to replace the original ReLU activation when 
the number of image channels is small, and thus, the loss 
of image features is reduced.

PSP-M changes the three-stage feature extraction man-
ner in traditional segmentation methods, i.e., dimension 

Fig. 4  PSP-M mural segmentation model. The foundation layer of the input image is subjected to pretraining by MobilNetV2 and atrous 
convolution treatment to extract feature map (a), which is further processed by the pyramid pooling module, represented by b in the figure, to 
obtain the fused features with global information. The features are fused with feature map (a) and then output through convolution (3)
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reduction followed by a convolution and dimension 
increase. It fuses inverted residual modules and adopts 
the manner of dimensions increasing followed by a con-
volution and dimension reduction. The utilization of the 
shortcut structure enhances the gradient propagation 
capability between multilayer networks, matched with 
longitudinal convolution to transfer feature extraction to 
high dimensions. The advantage of this operation is that 
the scale of convolution kernels is much smaller than the 
number of output channels, which can reduce the time 
and spatial complexity of the convolution layer. This 
design is memory-friendly and greatly improves the seg-
mentation efficiency of the model.

Finally, the model also exhibits optimization in detail, 
such as the choice between Maxpool and Avgpool [30]. 
Because the objects of ancient mural segmentation mod-
els prefer texture contour features, maximum pooling is 
selected as the pooling method of the model, which filters 
image irrelevant feature information, and thus, makes the 
mural segmentation effect more distinct. In addition, at 
the part labeled (2) in the figure, a deep separable con-
volution network is also introduced, which spans two to 
three network layers in a shortcut mode. With reference 
to the residual network model, the problem of increased 
feature extraction errors caused by gradient divergence 
in deep models is solved, thereby improving the accu-
racy of feature segmentation as a whole. The features 
after multiscale fusion through pyramid global modules 
are extracted and then further fused with (a). After the 
results are obtained, the number of channels is reduced, 
the model training complexity is reduced, and the final 
prediction map is generated through the convolution 
modules of structure (3).

The workflow of the model is shown in Fig. 5.
The workflow of the algorithm is described as follows:
Step 1: We input the image.
Step 2: We take advantage of the longitudinal convolu-

tion and point convolution in MobileNetV2 to extract the 
feature information of the input image. Then, we form a 
feature map.

Step 3: We perform maximum pooling for the fea-
ture map and use four-layer pyramid modules to obtain 
context information. The sizes of the pooling kernels of 
the four layers correspond to the features of the whole 
feature image, 1/2 of the image and a small part of the 
image. These features can form the global features of the 
image after fusion.

Step 4: We perform direct upsampling on the low-
dimension feature map through bilinear interpolation to 
recover the original size of the feature map at each layer 
of the global pyramid modules.

Step 5: We splice the feature maps at different levels 
into the final global feature of pyramid pooling.

Step 6: We generate the final prediction map after a 
convolution layer. The segmentation workflow ends.

The fusion of a lightweight neural network in the 
PSP-M model improves the efficiency of image segmen-
tation and guarantees segmentation accuracy. It also 
greatly decreases the number of parameters required 
for model calculation, reduces the requirements for 
hardware conditions in the process of pretraining, and 
reduces the learning cost of the neural network. These 
virtues allow the proposed model to eliminate the 
dependence on large and medium-sized equipment, 
improve the matching degree with light equipment, and 
achieve a satisfactory effect on mural segmentation.

The pseudocodes of PSP-M are as follows:
Input: the training set, Dataset, the testing set, Image 

and the segmentation model, Model.

1.	 Logs ← ModelTrain(Dataset); /*train Dataset by PSP-
M, place the parameters into the Logs files*/

Fig. 5  PSP-M workflow. The input image is subjected to deep 
separable convolution to form a feature map, which further 
undergoes maximum pooling and processing with the pyramid 
pooling module to obtain the semantic information of feature 
maps. Then, upsampling is performed for the image containing the 
semantic information using bilinear interpolation. Finally, feature 
maps of different hierarchies are spliced up to obtain the predicted 
image
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2.	 PredictLoad(Logs); select the optimal parameters 
from Logs and introduce them into the prediction 
procedure*/

3.	 Image_out Model(Image); Segment the images in 
Image*/

Output: Segmented image set Image_out.

Experiment
Experimental environment
The experiment is performed on the Window 10 oper-
ating system, with Inter Core i7-9750H as the PC pro-
cessor, NVIDIA GeForce 1660Ti as the graphics card, 
JetBrains PyCharm Community Edition 2019 as the plat-
form and with Python as the language. Based on the Ten-
sorFlow1.11.0 deep learning framework, combined with 
the Keras2.2.4 library, the proposed model is trained and 
tested. The computer vision and machine learning soft-
ware library, Opencv, and the labeling software, Labelme, 
are used for dataset processing.

Experimental objective
The purpose of the current experiment is to test the fea-
sibility of the application of the PSP-M model in image 
segmentation for ancient Chinese mural images, and the 
performance of the PSP-M is tested by comparing those 
of other models.

Experimental design
The datasets for the experiment are divided into the 
training set and the testing set. The datasets contain six 
types of labels, with a total of 500 images, which are all 
from Complete Works of Dunhuang Murals in China and 
the scanning graphs of Wutai Mountain mural images. 
These images, belonging to different types and with dif-
ferent sizes, are modified to images with a resolution of 
224 × 224 with the resize function provided by OpenCV, 
and the obtained images are integrated into the original 
dataset. The dataset required for network model train-
ing in the field of deep learning should contain thousands 
of images. To solve the problem of overfitting due to a 
small dataset in the process of image segmentation, the 
dataset experiences enhancement (data augmentation). 
Specifically, Scikit-image is used to implement the data 
enhancement commands for rotation and flipping. Image 
layers are modified using Photoshop, the color-scale tool 
is employed to darken images with a complex composi-
tion structure, and the filter function of the software is 
used to add noise to the original image. The number of 
images in the dataset is expanded to 2000 (Additional 
file  1). The training and testing datasets are divided 
according to a ratio of 9:1. Detailed information on the 
enhanced dataset is summarized in Table 2. The six labels 

for these images include animal, house, people, auspi-
cious clouds specifically associated with Buddhism and 
the Buddha statue, and apart from background.

The enhancement effect is shown in Fig. 6.
The PSP-M requires single-channel labeled images 

as the dataset. After data enhancement, the main fore-
ground of each image is subjected to point-by-point 
annotation with image labeling software.

An example of the annotation effect is given in Fig. 7.
Figure 7a shows the scanned image. Its edges are sub-

jected to point-by-point annotation with floating points. 
These annotation points are connected to form the result 
shown in Fig.  7b. Then, a single-channel gray image is 
trained according to the original and annotation images. 
The obtained gray images and the scanned images are 
merged to form the dataset.

In terms of the loss function, a cross entropy loss 
function and the Dice loss function are employed in the 
PSP-M. The cross-entropy loss function independently 
evaluates the class prediction of each speed limit vec-
tor and then averages the pixels. If sample imbalance 
appears, the weight of the smaller target sample is reset 
until a satisfactory segmentation effect is achieved. The 
loss change is shown in Fig. 8.

In the PSP-M, the Dice loss function is also used sepa-
rately. The principle of the Dice coefficient is to intersect 
the predicted result with the real result. The obtained 
value is multiplied by two and divided by the sum of the 
absolute values of the predicted result and the real result. 
To reflect the convergence of the loss function, the Dice 
loss function is taken as 1 minus the value of the Dice 
coefficient. Such an operation can overcome the negative 
influence caused by the different sizes of the images. In 
the training process, we pay more attention to the fore-
ground region of the image to eliminate the possible 
impact of sample imbalance on the segmentation results. 
The Dice loss function change is shown in Fig. 9.

In the training process, every 10 epochs compose 
one generation. The size of batch_size is set at 8, and 
batch is extracted 250 times per generation for 250 
parameter updates. The learning rate is 1e-5. A call-
back function, ReduceLROnPlateau (parameters: 

Table 2  Original data and the data after enhancement

Table Original Data 
augmentation

Animal 120 422

Build 110 380

Cloud 100 400

Disciple 85 382

Buddhism 95 416

Total 500 2000
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foctor = 0.5, patience = 3, verbose = 1.it), is used to 
monitor the loss values of the training set and the test-
ing set. If three continuous values do not decrease, the 
learning rate is reduced. If more than three of the con-
tinuous loss values do not decrease, the model training 
process ends. The variations in the segmentation accu-
racy of the model show a decrease followed by a rather 
stable state (Fig. 10).

As shown in Fig.  10, the accuracy of the segmenta-
tion model improves rapidly in the first three genera-
tions, fluctuates in the fifth and sixth generations, and 
stabilizes again after the eighth generation. The train-
ing of the model ends in the tenth generation, and the 
learning rate reaches an optimal level.

Results and discussion
Comparison of the amount of parameters
To validate the satisfactory performance of the light-
weight neural network with a deep separable structure 
MobileNetV2 in image segmentation, comparisons are 
made with some of the frequently used traditional net-
work models, and the results are summarized in Table 3.

In common neural network models, a higher depth 
value of the model means a greater number of param-
eters, a more complex structure, and a greater diffi-
culty in training. As shown in Table  3, the parameter 
amounts of Xception [25], Visual-Geometry-Group 19 
(VGG19) [31], ResNet50 [32] and IceptionV3 [33] are 
several-fold that of MobileNetV2, and even ResNet50, 

Fig. 6  Data-enhanced images. a Original. b Inversion. c Flipping. d Noise increasing. e Darkening. The five rows and six columns in the figure 
represent five classes of images and six different handling methods, respectively
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which is one of the typical ImageNet programs, and 
has more than 2 times the parameter amount com-
pared with MobileNetV2. These findings, combined 
with a comprehensive analysis of other factors, such 
as experimental hardware requirements and training 
time, indicate that the selection of a convolutional neu-
ral network with a deep separable structure for ancient 
mural segmentation is reasonable.

Comparison of the time for segmentation
To validate the satisfactory performance of the deep 
separable network in segmenting the neighborhood 
regions of the ancient mural image, we assess the pro-
posed model in terms of segmentation time, accuracy 
and segmentation effect. First, based on the self-pre-
pared datasets, the traditional image segmentation 
models FCM [1] and Grapth Cuts [6], the currently 

Fig. 7  Sample graph of the dataset. a Scanned image of the mural. b Mural annotation

Fig. 8  Cross entropy loss change chart
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typical image segmentation network models in the field 
of deep learning SegNet [13], PSPNet [16] and Deep-
labV3 + [15] and the modified DeeplabV3 + -based 
model MC-DM [34] are selected. Then, the results 
of time consumption for segmentation are compared 
(Table 4).

To compare the results obtained in this study with 
those reported in the literature [1, 7], all models are oper-
ated in CPUs other than the GPU environment. As shown 
in Table  4, the traditional FCM model has the long-
est time consumption, whereas that of the Grapth cuts 
model is the shortest. However, Grapth Cuts has blurred 

Fig. 9  Dice loss function change chart

Fig. 10  Accuracy change chart. acc, the accuracy of model training; val_acc, the accuracy of the model on the validation set



Page 13 of 17Cao et al. Heritage Science           (2022) 10:11 	

segmentation boundaries and chaotic backgrounds and 
foregrounds. Compared with other models, its segmen-
tation effect is much poorer. To achieve a satisfactory 
effect, a large number of target points must be annotated 
artificially, which requires a much longer time compared 
with other models. DeepLabV3 + is one of the best mod-
els in the field of image segmentation. It employs the 
encoder-decoder [35] structure, which is able to fuse 
the feature information of the image at multiple scales, 
and thus, reduce the loss of the spatial information of 
the image. However, due to a rather complex structure, 
it takes a long time to predict the results. MC-DM is a 
modified model based on DeeplabV3 + . It integrates a 
lightweight neural network in the original model, and 
therefore, reduces the limitations of hardware conditions 
and improves the work efficiency of the model. However, 
its segmentation efficiency is much lower than that of the 
PSP-M model. In addition, the PSPNet selects the resid-
ual neural network, ResNet50, as the basic network, and 
the PSP-M uses MobileNetV2 as the basic network layer. 
The PSP-M model outperforms the PSPNet in segmenta-
tion efficiency.

Comparison of the accuracy
In terms of pixel accuracy (PA) [36], FCM and K-means 
(clustering algorithm) have low sensitivity to color, and 
thus, they are often used for gray image segmentation. 

The accuracy of Grapth Cuts in image segmentation var-
ies according to the quality of the images provided by the 
users, and it is influenced by artificial factors. Therefore, 
in this study, we compare the accuracy of the PSP-M with 
those of the SegNet [13], PSPNet [16], DeepLabV3 + [15] 
and MC-DM [34]. The results are summarized in Table 5.

The SegNet calculates the pooled index using the 
maximum pooling method, by calculating the nonlin-
ear upsampling of the corresponding encoder, thereby 
saving the upsampling learning process. However, for 
mural segmentation, this model cannot make full use of 
the relationship between image pixels, and thus, it lacks 
context-based reasoning ability due to the complex com-
position of mural images. The PSPNet is characterized 
by global priority. It contains the global pyramid module 
with information about different subregions at different 
scales. The fusion of four types of pyramid-scaled fea-
tures helps solve the image understanding problem when 
faced with complex scenes. It increases the accuracy 
by 1% compared with the SegNet network. The Deep-
LabV3 + adopts Xception as the underlying network, and 
its combination with the spatial pyramid module ASPP 
restores the spatial information of the image, which opti-
mizes the segmented boundaries of the image. With the 
modified underlying network and different designed loss 
functions, the PSP-M solves the sample imbalance prob-
lem in the segmentation process, which optimizes the 
feature extraction module of the model and saves seg-
mentation time. In terms of accuracy, the PSP-M is close 
to the MC-DM, but it is slightly lower than the Deep-
LabV3 + . Its accuracy is 2% higher than that of the PSP-
Net and 3% higher than that of the SegNet.

Comparison of the segmentation effect
To intuitively perceive the segmentation effects of differ-
ent models, we randomly select mural images from four 
different categories for semantic segmentation. With the 
segmentation of a single category of mural images as the 
baseline and other image elements as the background, we 
perform pixel-level image annotations for the segmenta-
tion results. The comparative results are shown in Fig. 11.

Table 3  Comparison of several common neural network models

Parameter and size embody the complexity of the model, and high values 
indicate higher complexity; depth represents the depth of the training model, 
and a higher value indicates longer time consumption

Model Parameters Size Depth

Xception 22,910,480 88 MB 126

VGG19 143,667,240 549 MB 26

ResNet50 25,636,710 99 MB 168

InceptionV3 23,851,734 92 MB 159

MobileNetV2 3,538,984 14 MB 88

Table 4  Comparison of the time consumption of different 
models in the CPU training environment

Model Predict time

SegNet 33.4 s

PSPNet 28.4 s

DeeplabV3 +  34.9 s

MC-DM 29.4 s

FCM 35.7 s

Grapth Cuts 2.3 s

PSP-M 17.4 s

Table 5  Comparison of the pixel accuracy of different models

pixel accuracy is a metric for the image segmentation effect, which is calculated 
based on the proportion of correctly labeled pixels in the total pixels

Model Pixel accuracy

SegNet 0.8161

PSPNet 0.8251

DeeplabV3 +  0.8508

MC-DM 0.8495

PSP-M 0.8434
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In Fig.  11, the first row shows the scanned mural 
images, and the second row shows the outlined anno-
tated images based on the anchor points annotated by 
image annotation software. The remaining rows show 
the image segmentation effects of different models. The 
SegNet is one of the early models adopting the encoder-
decoder structure. Its continuous downsampling ena-
bles the model to compress image features into tiny 
image indices. However, this operation can lead to over-
lap among image spatial information. In addition, after 
continuous upsampling, the image presents problems, 
such as a lack of central information and discontinuous 
edges of the segmented images. The fusion of the residual 
neural network and the introduction of residual blocks 
improve the performance of the PSPNet but increase the 
network width indirectly, which decreases the computing 
power of the model. Although the edge continuity of the 
segmented images based on the PSPNet improves com-
pared with the SegNet, central detail defects do appear 
when the PSPNet is used to segment the images from a 

single category. The segmentation effect of Grapth Cuts 
is optimized with the increase in the number of artifi-
cially annotated points. Its segmentation effect is greatly 
affected by artificial factors, and therefore, can only be 
used for reference. Because of the integration of the spa-
tial pyramid module and the encoder-decoder structure, 
DeepLabV3 + achieves a satisfactory segmentation effect. 
However, with the increase in the depth of the network, 
the expansion of the parameter space and the increase in 
training difficulties, it is likely to be affected by overfit-
ting. As a consequence, its segmentation effect becomes 
unstable. The fusion of the lightweight neural network 
reduces the number of parameters in the MC-DM model 
and reduces the time required for its training. For this 
reason, MC-DM achieves great improvement compared 
with other models. However, in regard to image details, 
much improvement remains to be made. While reducing 
the number of parameters, the PSP-M solves the image 
segmentation problem caused by sample imbalance.

In addition, we use subjective assessment [37], the peak 
signal-to-noise ratio (PSNR) [38] and the structural simi-
larity (SSIM) [39] as the assessment indices to compare 
the segmentation results of the model proposed in this 
study with those of other models.

To investigate the subjective assessment of the perfor-
mance of the proposed model, we assign 1, 2, 3 and 4 to 
four scanned images. We prepare images based on the 
segmentation results of different models. A total of 100 
studies are randomly selected, and the best segmentation 
results are recorded. The statistical results are shown in 
Fig. 12.

As shown in Fig.  12, 38% of the subjects believe that 
PSP-M achieved the best segmentation effect, followed 
by the MC-DM (32%). Due to individual differences in 
the segmentation effect, the DeepLabV3 + is only sup-
ported by 8 students, although it achieves the best accu-
racy during training. The SegNet and the PSPNet receive 
the lowest support rates.

Currently, the PSNR is the most common and widely 
used index for image evaluation. A larger value indicates 
a higher similarity between images. We suppose two 
images satisfy x, y ∈ Rn×m , where x is the noise approxi-
mation of y, X(i,j) and Y(i,j) represent the pixel values of 
the corresponding coordinates, H and W represent the 
height and width of the image, and n is the bit of each 
pixel. The PSNR is defined as follows:

(10)PSNR = 10log10
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Fig. 11  Comparisons among different experimental models. The first 
row contains the scanned images of the mural, while the remaining 
rows exhibit the segmentation outcomes based on different 
networks
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The RSNRs of the four samples based on different 
models are summarized in Table 6.

During the experiment, the SegNet and the PSPNet 
exhibit stable performance. For sample 2, which has a 
distinct outline and a simple structure, the segmenta-
tion effects of the six models are comparable. However, 
in samples 1 and 3, whose compositions are relatively 
complex, the DeepLabV3 + exhibits polarization in the 
segmentation effect. The MC-DM and the PSP-M show 
relatively satisfactory performance. The PSNR value of 
the PSP-M is 1–2 dB higher than that of MC-DM. The 
segmentation results of Grapth Cuts are affected by 
human factors, and its PSNR value can only be used as 
a reference.

Because the sensitivity of human vision to errors is 
not absolute and its perception results are affected by a 
variety of factors, such as the surrounding environment 
and light perception, there is a phenomenon of pleas-
ant subjective feeling with a low PSNR value. There-
fore, another assessment index is introduced in our 
study, i.e., SSIM. The calculation formula of SSIM is as 
follows:

where uX and uy represent the mean X and Y values of 
the image, respectively, σX and σY represent the standard 
deviations of the X and Y values of the image, σXσX and 
σYσY represent the variances of X and Y, respectively, σXY 
represents the covariance of X and Y, and C1, C2 and C3 
are constants, which are meant to avoid a 0 denomina-
tor. Similarly, SSIM is an index that is used to assess the 
similarity between two digital images. Compared with 
the PSNR, the measurement of SSIM in the quality of 
the image structure is more consistent with the judgment 
based on human vision. The SSIM value ranges from − 
1 to 1, and a higher value indicates a higher structural 
similarity between images. SSIM serves as an assessment 
method for structural distortion according to the correla-
tion between adjacent pixels. The SSIM results based on 
different models are summarized in Table 7.

After segmentation, the SSIM values of some images 
based on the DeepLabV3 + somewhat decrease, while 

(11)

SSIM(X ,Y ) =
(2µXµY + C1)(2σXY + C2)

(µX2 + µY 2 + C1)(σX2 + σY 2 + C2)

Fig. 12  Number of supports for the segmentation results of different models

Table 6  Comparison of the PSNRs (dB) based on different models

Image SegNet PSPNet Grapth Cuts DeeplabV3 +  MC-DM PSP-M

1 12.78 16.28 15.92 9.81 16.17 18.29

2 25.86 25.8 27.69 26.36 26.75 26.13

3 16.19 15.25 17.71 15.45 17.74 19.85

4 16.67 15.07 21.39 21.78 21.97 22.76
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those based on other models exhibit a similar tendency 
to the PSNRs, with the best performance observed in the 
PSP-M.

According to the three assessment indices, the PSP-M 
exhibits satisfactory segmentation performance, with 
clear image edges and excellent detail preservation. 
Therefore, it is suitable for ancient mural segmentation. 
In addition, our results also verify the feasibility of the 
application of deep separable networks in ancient mural 
segmentation.

Conclusions
Ancient Chinese murals are the crystals of the wis-
dom of Chinese working people, and they are one of the 
manifestations of Chinese civilization. Each mural pos-
sesses special historical and cultural backgrounds, and 
research on murals is a precious way for contemporary 
people to understand traditional culture. However, after 
a long history, these treasures, engraved on the wall, have 
been damaged to varying degrees, and a large number 
of exquisite murals are confronted with paint shedding, 
cracks in the bearing body and image defects, which 
affects information acquisition. Therefore, represent-
ing the content expressed in murals through technical 
means is a key issue in cultural relic protection, as well as 
a difficult task. The PSPNet network adopts the four-level 
pyramid module to extract the features of mural images, 
which reduces the loss of mural features. Furthermore, 
the adoption of the characteristic of deep separable con-
volution of MobileNetV2 may provide a new idea for 
mural image segmentation and improve the efficiency of 
ancient mural protection.

The combination of deep learning-based methods and 
models with ancient mural image segmentation serves 
as a new attempt at working methods for ancient mural 
protection. It is also a new manner of exploration in the 
related field. In this study, we combine a deep separable 
network structure and an image segmentation model 
with a satisfactory segmentation effect. This combina-
tion improves the segmentation accuracy and reduces the 
time consumption required by the model. The introduc-
tion of the Dice loss function into the model overcomes 
the negative influence on the segmentation effect caused 

by sample imbalance. Through a large number of com-
parative experiments, we verify the satisfactory appli-
cability of deep separable networks in the field of mural 
segmentation.

However, some problems remain to be solved in the 
future. For instance, regardless of the model we use, 
loss of feature information seems unavoidable, and the 
application of various multiscale fusion networks could 
only restore the feature information as much as possi-
ble. For some images with sharp points, the feature res-
toration ability is poor, which constitutes one important 
reason why there is currently no universal model in the 
field of image segmentation. It is only through continu-
ous attempts and explorations that great progress can be 
made to solve this problem.
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