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Abstract 

The study of pores in historic bricks is important for characterizing and comparing brick materials, evaluating the 
degree of deterioration, predicting behavior in future weathering conditions, studying the effectiveness of protec-
tive measures, and analyzing the potential effects of cleaning treatments. High-resolution micro-CT coupled with 
3D image analysis is a promising new approach for studying porosity and pore systems in bricks. In this technique, 
hundreds or even thousands of X-ray projection images are acquired at 360 degrees around a sample. The X-radiation 
passing through the sample is absorbed, with radiation attenuated to varying degrees depending on the varying 
densities of phases within the object. The 3D volume is reconstructed by a computer algorithm, producing images 
where each voxel has a grayscale intensity value associated with the component it represents. Recent new instrument 
designs allow fast scanning with good spatial resolution. In this research, we present a set of protocols for creating 
optimal images of brick pores in micro-CT scans and for conducting 3D image analysis to extract both qualitative 
and quantitative data from those scans. Small samples give better spatial resolution for imaging of pores, so given the 
typical heterogeneity of bricks, scanning multiple samples from each brick ensures that the results are more likely to 
be representative. Machine learning and deep learning with convolutional neural networks were found to be impor-
tant tools for better distinguishing pores from the surrounding matrix in the segmentation process, especially at the 
very limits of spatial resolution. Statistical analyses revealed which of the many parameters that can be measured are 
potentially most significant for characterizing the pore systems of bricks. These significant pore variables came from 
a multi-staged image analysis approach and include the total volume percent occupied by pores, the percentage of 
those pores accessible to the surface versus isolated interior ones, a variety of statistical properties of individual pores 
related to their size and shape, the average number of connections that pores have to other pores, and the length, 
diameter, and directness of those connections.
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Introduction
Characterizing porosity in historic bricks is important for 
interpreting and comparing brick materials, evaluating the 
degree of deterioration, predicting behavior in future weath-
ering conditions, studying the effectiveness of protective 
measures, and analyzing the potential effects of cleaning 
treatments. High-resolution micro-CT coupled with 3D 
image analysis is a promising new approach for studying 
porosity and pore systems in bricks. The research presented 
here has the primary goal of using micro-CT scanning and 
3D image analysis to identify significant parameters for 
characterizing brick porosity. Its purpose is to expand the 
toolkit available to conservation scientists for investigating 
porosity variables, given how crucial porosity is for inter-
preting the history and preservation state of historic bricks.

Porosity refers to the volume fraction of a material 
that is empty space, or voids; the amount and char-
acteristics of that pore fraction in bricks impact the 
mechanical performance of brick as a building material. 
Characterizing a brick’s porosity reveals information 
about its raw materials and production technology, use 
properties, and deterioration susceptibility and mech-
anisms. While many analytical methods have been 
used to study porosity, no one method has been found 
adequate, in part because the void space can span an 
enormous range in scale [1]. Experiments using micro-
computed tomography (micro-CT) to study porosity in 
ceramics, bricks, or other architectural materials have 
been conducted for more than 15  years. Most often 
these experiments compared micro-CT to one or more 
other techniques for measuring porosity [2–12]. A fre-
quent conclusion has been that porosity values can vary 
considerably depending on the technique used because 

each technique works in a somewhat different way and 
is measuring somewhat different characteristics, types 
of pores, and pore size ranges. Each technique has 
advantages and disadvantages.

Previous published applications of micro‑CT analysis 
to brick porosity studies
As an example of the many published comparisons of micro-
CT to other porosity analysis techniques, Coletti et al. [13] 
analyzed the porosity of one sample each from four indus-
trial bricks of differing compositions and firing temperatures 
by using micro-CT with 3D image analysis. They compared 
the results to three other methods for characterizing poros-
ity, focusing on total porosity and pore size ranges. They 
concluded that a porosity characterization benefits from 
using a variety of methods as each has limitations and no 
one method can completely characterize the entire pore 
system and its range of pore sizes. Bugani et al. [14] found 
that it was difficult to compare results between mercury 
intrusion porosimetry (MIP) and micro-CT for the pore size 
range that could be characterized by micro-CT (~ 10 µm and 
above), which they attributed to the fact the two techniques 
are based on different physical principles. Importantly, while 
MIP provides quantitative data, it cannot provide visual data 
regarding the location or distribution of pores.

Rather than performing yet another multi-technique 
comparison to micro-CT, this work seeks to highlight 
where micro-CT coupled with 3D image analysis has 
strengths that may be useful in characterizing the pore 
fraction of historic bricks. Some of the limitations of this 
approach are also highlighted, to emphasize where and 
when it needs to be augmented by other methods.

Graphical Abstract
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Importance of characterizing porosity in bricks
The study of porosity in bricks is important because 
porosity reflects the choices that were made in raw mate-
rials and technology, and because porosity is also strongly 
connected to a variety of physical and mechanical prop-
erties that influence the resilience of a brick structure 
[15]. Porosity refers to the volume of empty space within 
a material in the form of voids, or pores, along with 
cracks that have formed. A pore system consists of a 
group of pores, many with connections (pore throats) to 
other pores and/or open to the surface [16].

Porosity in brick results primarily from two techno-
logical choices. First, there is the choice of raw materi-
als. If there is a significant fraction of non-clay particles 
present (whether naturally occurring with the raw mate-
rial or added to improve drying and firing properties by 
providing more avenues for release of water) porosity 
can increase since clay tends to shrink away from those 
particles during drying and firing; this is especially true 
for large particles [17–21]. Second, production tech-
niques can heavily influence the pore system. Fabrica-
tion methods and firing temperatures and atmospheres 
can influence the size, shape, and orientation of pores 
[22, 23]. During firing, additional porosity can be created 
if carbonates are present to dissociate and organics to 
burn out or char, and as other particles undergo thermal 
expansion. If firing temperatures are high enough, poros-
ity will then decline as sintering and vitrification of the 
clay matrix occurs; the ratio of isolated closed pores to 
open connected pores will also increase [7, 23]. Round, 
secondary pores can be produced by trapped gases as the 
clay matrix and silica minerals begin to melt, off-gas, and 
vitrify. If temperatures become too high, the round pores 
can become bloated and expand in number, indicating 
overfiring [3, 24]. As the firing temperature rises, sealed 
(unconnected) porosity increases; pore size distribution 
also varies with firing temperature. Cracks can form dur-
ing cooling if there are varied thermal expansion coeffi-
cients of different fabric constituents [22], which is more 
noticeable in heterogeneous handmade objects with a 
high percentage of varied additives. These cracks provide 
another avenue for pressure-induced water entry.

The connected pores provide a passageway for water to 
enter and move through the brick by capillary action or 
by pressure; the flow capacity and how freeze-thaw cycles 
affect bricks are also controlled by the size, shape, and 
number of pore throats per pore [25]. Very large pores (> 
a few mm) are sometimes termed “cavities” and may not 
contribute to capillary action but can provide ingress for 
water through pressure (such as wind-driven rain). Small 
pores (< 5 µm) allow water to enter but not escape eas-
ily, causing them to be especially affected by freeze-thaw 
cycles and enlarge over time. For pores larger than this, 

water can both enter and escape more freely [26]. Most 
analyses of pore systems have focused on flow capacity; 
however, isolated pores (unconnected to other pores or 
to the surface, or “closed pores”) are also important in the 
study of bricks because they can contribute to other char-
acteristics such as density, mechanical strength, durabil-
ity, and thermal conductivity [16, 25, 27, 28].

The resulting, often complex, pore system provides an 
avenue for ingress of water in liquid or vapor form. This 
is one of the main mechanisms of deterioration through 
freeze-thaw cyclic damage, salt crystallization damage, 
transporting of acid and particulate pollution and their 
reaction products, and disaggregation of the matrix 
in weakened zones [29]. It has been proposed that it is 
highly likely that in the future, with more intense and 
frequent precipitation or flooding events predicted by 
climate change models, brick structures in some regions 
will show higher tendencies for moisture-related damage 
[30].

Porosity in a fired ceramic material such as brick can 
also be advantageous, so is often deliberate and con-
trolled. Production factors that influence total poros-
ity, pore size distribution, and the type of pores present 
and their distribution (open and closed, and overall pore 
morphology) can have a major effect on the physical 
properties important for bricks such as strength, water 
absorption, and frost resistance [31, 32]. However, dete-
rioration over time can lead to significant changes in the 
original pore system, such as an increase in pore size 
and pore connectivity; pores and throats can become 
enlarged because of water flow or freeze/thaw cycles 
and combine with others, and new cracks can form as a 
result of use and environmental exposure. Understand-
ing the total porosity percentage and the pore structure 
(size ranges, morphologies, and connectivity) is useful 
for characterizing the material and comparing it to other 
similar materials, evaluating the current degree of deteri-
oration, predicting behavior in future weathering condi-
tions, studying the effectiveness of protective treatments, 
and analyzing the potential effects of cleaning treatments 
[26, 27, 33, 34].

Micro‑CT analysis of bricks
Conventional computed tomography (CT) has been used 
for decades [35, 36]. In this imaging technique, hun-
dreds or even thousands of X-ray projection images are 
acquired at 360° of rotation angles around a specimen. 
X-ray radiation passing through the sample is absorbed, 
with the radiation weakened to varying degrees depend-
ing on the varying densities within the object. The 3D 
volume is reconstructed by a computer algorithm, pro-
ducing maps of X-ray attenuation based on the compo-
sition/density of the material, with each pixel having an 
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intensity value associated with the component/phase it 
represents. Depth information is much better than in 2D 
radiographs, making the specimen interpretation of 3D 
images obtained by CT more accurate. This method has 
been used since its inception in the 1970s as, for example, 
a medical diagnostic tool to image bone structures [36]. 
However, such medical CT systems have low spatial reso-
lution, typically hundreds of microns, because of the size 
of the object being investigated (humans) and the large 
size of the X-ray source focal spot. Newer high-resolution 
micro-CT instruments have a much smaller focal spot, 
with much higher resolution for the internal study of 
materials (typically 50–100 microns or less in resolution 
with sample sizes below 5  cm) [37, 38]. Nano-CT can 
achieve as low as 325 nm spatial resolution but requires 
small sample sizes (generally 0.5–2 mm) [39].

Synchrotron micro-CT systems have been used for 
decades, with excellent spatial resolution [40]. However, 
the difficulty of accessing synchrotron facilities limited 
the range and quantity of research applications. In recent 
years, more widely accessible laboratory-based (non-syn-
chrotron) systems have greatly improved with advances 
in detector technology, more accurate rotation stages, 
and new acquisition geometries. These laboratory-based 
systems, often affordable benchtop instruments, are now 
widely available and can achieve good spatial resolution 
and high-speed scanning [14], leading to micro-CT now 
being regularly used as a research tool in materials and 
composites science and in geology for the study of rock 
fractures, internal microstructure, porosity, and phase 
quantification, replacing or augmenting petrography 
[38, 41, 42]. This technique has been applied less often to 
the study of bricks or other ceramic materials, and only 
rarely with quantitative 3D image analysis. Yet, emerging 
work in allied disciplines and in industry shows that this 
technique can give a tremendous amount of information 
about ceramic properties and technologies.

Du Plessis et al. [43] noted that a past downside of using 
micro-CT in porosity studies was that it usually required 
time-consuming scans and custom software, but current 
laboratory-based micro-CT scanners have relatively fast 
scan times with immediate image reconstruction. Power-
ful and comprehensive 3D image analysis packages now 
exist for analyzing and interpreting those scans, elimi-
nating the need for in-house programming. Some of the 
software packages commonly used are VGStudio, Avizo, 
Mimics, ImageJ/Fiji, and Dragonfly.

Issues of micro‑CT sample size, representativeness, 
variability, and replication
Achievable voxel size is limited by the sample size, with 
smaller samples allowing for finer spatial resolution. 
This means there is a tradeoff between being able to 

adequately image smaller pores and the representative-
ness of samples from heterogeneous materials [10]. With 
handmade and historic bricks, even a cursory examina-
tion of the brick interior and of thin sections taken from 
different locations within the brick highlights the fact 
that these materials are often quite heterogeneous. A 
1-mm sample can be analyzed on a nano-CT instrument 
with spatial resolution of 350 nm to examine some of the 
smallest pores and their locations but will not be repre-
sentative of the brick as a whole or of larger pores within 
the pore network system. A sample of 2.5  cm will be 
much more representative of pore sizes, but quantitative 
data will be limited to larger pores (with our instrument, 
50  µm or larger). Higher-resolution scans also greatly 
increase file size and increase computational demands on 
image processing. Porter and Wildenschid [44], for exam-
ple, found that doubling resolution from 11.8 to 5.9 µm/
voxel increased datafile sizes by a factor of 8, yet it pro-
vided few new insights regarding porosity (leading them 
to settle for 13 µm resolution for most of their work).

Du Plessis et al. [43] used micro-CT to study the poros-
ity of a concrete sample. They selected a range of sam-
ple sizes and resolutions (from 200 µm spatial resolution 
with 100 mm fields of view so that very large pores could 
be characterized, down to a 5  mm field of view with 
10  µm spatial resolution to characterize smaller pores). 
The same sample was scanned at six resolutions; for the 
finest resolutions, the sample was cut. The finer resolu-
tion/smaller fields of view allow for smaller detectable 
pores, but very large pores could not be fully character-
ized because they were too large for the field of view. 
They also compared slow and fast scans. Fast scans at 
lower resolution were found useful when the objects of 
interest were the largest pores. However, fast scans result 
in more noise, making detection of smaller pores more 
difficult.

Most papers reporting micro-CT scanning on cultural 
materials appear to analyze only one sample per brick or 
other object. Several studies that did include replication 
have shown that porosity values can vary greatly from 
spot to spot for rocks with high heterogeneity [9] and can 
also vary considerably across fired bricks [11]. Given the 
high heterogeneity of most bricks, especially handmade 
ones, a single sample is unlikely to be representative of 
the brick material.

Materials
Six different brick types were selected for comparison, 
including three modern hand-molded bricks and three 
deteriorated historic bricks. The mineralogy for each 
was identified by thin-section petrography (described 
in more detail in the Experimental Methods section 
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below, under the subsection on ancillary methods). The 
six brick types (A-F) are as follows:

Brick A. Modern hand-molded, Red Thin Brick 
from Faceables. These red bricks (Fig.  1A) (20 x 5.5 
x 1.3 cm) were made by hand to be used as a brick 
veneer. In thin section (Fig. 2A), the hematite-rich clay 
appears very sandy. In addition to quartz (very fine- to 
coarse-grained with both polycrystalline and undu-
lous quartz), the sand has lesser amounts of plagio-
clase feldspar, metamorphic lithics, and micas (biotite, 
muscovite, and sericite). Other components are shale 
and grog (crushed or ground up brick or fired ceramic 
fragments).

Brick B. Modern hand-molded sand-struck, Brandy-
wine Brick from Delaware Brick Company. These red 
bricks (Fig. 1B) (21 x 9.5 x 7.0 cm) were manufactured by 
Glen-Gery in York, Pennsylvania, a major manufacturing 
site for bricks distributed throughout the Mid-Atlantic. 
In thin section (Fig. 2B), there is a range of fine to very 
coarse grains of quartz, metamorphic lithics, shale, and 
grog, with smaller feldspars and biotite mica. The hem-
atite-rich matrix contains chunks of hematite and some 
limonite.

Brick C. Modern hand-molded sand-struck, Barlow 
Brick from Delaware Brick Company. These red bricks 
(Fig.  1C) (19.0 x 9 x 5.5 cm) were also manufactured 
by Glen-Gery in York, Pennsylvania. In thin section 
(Fig.  2C), the quartz component of the hematite-rich 
matrix is fine-grained, with small biotite micas and larger 
chunks of shale, grog, and some metamorphic lithics 
with polycrystalline and undulous quartz.

Brick D. Dutch-style brick recorded as being from the 
1687 “Old Tile House” demolished in 1884 in New Cas-
tle, Delaware [45]. These yellow-green bricks (Fig.  1D) 
(17.5 × 8.0 × 3.25 cm) apparently came from the former 
Dutch townhouse (there were originally many Dutch set-
tlers in historic New Castle). In thin section (Fig.  2D), 
they appear poorly sorted, with streaks and chunks of 
sandy quartz within a silty matrix. Along with abundant 
quartz, there is plagioclase feldspar, muscovite mica, and 
chunks of hematite and limonite. Within some of the 
larger hematite chunks are small pools of silica glass.

Brick E. Red brick from a 1768 Cape Cod house in 
Dennis, Massachusetts. It was used (Fig.  1E) (18 x 8.75 
x 6.5 cm) in the construction of a root cellar. In thin sec-
tion (Fig.  2E), the hematite-rich matrix (with chunks of 
hematite and bits of limonite) has quartz ranging from 
silt-sized to very coarse (including some polycrystal-
line quartz) along with plagioclase feldspar, clinopyrox-
enes, metamorphic lithics, shale, and small biotite mica 
particles.

Brick F. Red brick from the John Evans House, built 
in 1715, in Chester County, Pennsylvania. These bricks 
(Fig.  1F) (21 x 10 x 6.5 cm) were used in the construc-
tion of a now deteriorating farmhouse and some of the 
bricks have fingerprints from the makers. Such bricks 
were often handmade on site, often by untrained labor. 
Raw materials would have been collected nearby, and fir-
ing would be done on-site as well, with relatively crude 
equipment. Bricks were often stacked together with dried 
bricks forming the walls of the kiln. Wood fuel could 
create large variations in temperature among sections 

Fig. 1  Cut surfaces of bricks. A, B, and C (top) are three different modern hand-molded bricks. D is a yellow-green Dutch-style brick from a 1687 
house in New Castle, Delaware. E is from a 1768 house cellar in Dennis, Massachusetts. F is from a 1715 house in Chester County, Pennsylvania
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of the kiln [46]. In thin section (Fig. 2F), the material is 
very inhomogeneous. The hematite-rich matrix contains 
silt and fine sand-sized grains of quartz along with very 
coarse chunks of quartz (some polycrystalline), meta-
morphic lithics, microcline feldspar, micas (biotite, mus-
covite, and sericite), and chunks of carbonized organic 
material.

Experimental Methods
HR micro‑CT
Most of the experimental work was done on a Rigaku 
GX130 high-speed high-resolution (HR) micro-CT 
instrument with cone beam geometry in a shared Univer-
sity of Delaware facility, the Advanced Materials Char-
acterization Laboratory. Samples are placed on a small 
horizontal holder with a Styrofoam support and centered 
in the field of view. The sample stays stationary while a 
micro-focus X-ray source with W target illuminates 
it (X-ray source to center of rotation 120  mm) and a 7 
Mp flat-panel X-ray detector (FPD) circles 360° degrees 
around it while collecting magnified projection images at 
view angles uniformly distributed around the object. The 
FPD detector active area size is 116.424 × 145.728  mm, 
with pixel dimensions of 2352 × 2944 pixels, pixel size 
49.5  µm, and distance of FPD to center of rotation is 

224 mm. High-speed gantry rotation of the detector ena-
bles high-speed data collection. The number of projec-
tions needed for good resolution on this instrument is 
determined by the software according to the field of view 
to be covered and the voxel size. For our experiments, 803 
projections were determined to be necessary for produc-
ing quality images that successfully show the features of 
interest. However, many other experimental parameters 
contributed to the high quality of the images by reduc-
ing signal-to-noise ratio, improving phase contrast, and 
reducing beam hardening artifacts. To reduce noise in 
images, the longest supported scan time for this instru-
ment (57 min) was used, with an initial 57-min warm-up. 
Gain calibration was performed prior to each imaging 
session to minimize noise and artifacts in the final images 
by correcting for the non-uniform response of individual 
pixels of the detector to X-ray exposure. Creating sam-
ples only slightly larger in size than the scanned field of 
view also reduced noise in the images. Phase contrast and 
image quality were maximized by experimenting with 
settings such as the focus spot size, source voltage, source 
intensity, and filter selection to identify the most appro-
priate choices for the sample type and size. For the brick 
samples of 0.5 cm3, using a small focus spot size (5 µm) 
allowed for higher resolution. The optimal settings for 

Fig. 2  Thin sections from each brick, mounted in blue-dyed epoxy so pores are blue, then scanned in a Pathscan Enabler 5 geological slide scanner 
(plane polarized light) at a resolution of 2.54 µm/pixel. Bright particles are silica minerals; fired clay matrix is black. A, B, and C (left) are the three 
modern hand-molded bricks, and D, E, and F (right) are the three historic bricks seen in Fig. 1
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best contrast were found to be 130  kV and 61 µA. A 
0.06 mm Cu and 0.5 mm Al filter combination improved 
contrast and reduced beam hardening artifacts [14]. The 
Rigaku software employed to create the 3D reconstruc-
tion (in 15 s) using a FBP (filtered back projection) recon-
struction algorithm incorporates a ring reduction filter to 
minimize ring artifacts inherent in CT scans.

This instrument has a nominal resolution (smallest 
possible voxel size of a reconstructed image) of 4.5  µm. 
However, the actual spatial resolution (how far apart 
two features need to be in order to be distinguishable in 
an image) depends on a variety of experimental choices 
– smaller samples will give better spatial resolution, 
and longer scan times will produce less noise and make 
smaller features more easily visible. The finest spatial 
resolution that can be obtained with this instrument is 
10 µm with a 5 × 5 mm field of view, with sample sizes no 
more than about twice the size or thickness of the field of 
view to reduce noise. Confirming what spatial resolution 
was achieved was done by scanning a micro-CT bar pat-
tern chip phantom from QRM. This is a chip placed in an 
air-filled cylinder and inscribed with bar and point pat-
terns with diameters ranging from 5 to 150 µm line/point 

thickness. When scanned under the same experimental 
protocol as the samples, the image is used to evaluate 
spatial resolution in the center and periphery of scans. 
Linewidths and spot sizes of 150, 100, 50, 25, 20, and 
15 µm could easily be measured. The 10 µm line or spot 
widths were at the limits of spatial resolution and could 
be measured with some effort, and the 5 µm ones were 
discernible but too blurry to accurately measure.

The reconstructed image can be viewed as a single slice 
at a time in X, Y, or Z axes (width, height, and depth) 
or as a 3D image (Fig. 3). One can scroll through all 2D 
slices in each axis and manipulate the 3D image to view 
any part of the surface. The grayscale images can be 
colored by using a variety of alternative lookup tables.

Five 0.5 cm3 samples (giving 10 µm spatial resolution) 
from each of the six bricks were analyzed under these 
parameters and were used for the statistical analyses. 
These 30 samples were supplemented with experiments 
on a 1 cm sample (with a spatial resolution of 20 µm), and 
a 2.5 cm sample (with a spatial resolution of 50 µm) from 
each brick. In addition, courtesy of Aya Takase at Rigaku, 
a 0.5 cm-diameter sample from each brick that was first 
scanned on our instrument was also scanned using a 

Fig. 3  A micro-CT scan of a brick sample showing single 2D slices in X, Y, and Z axes and the complete reconstructed 3D image in the upper left. 
Dark areas are the pores, white spots are silica mineral grains, and gray areas are the fired clay matrix
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Rigaku CT Laboratory HX130 instrument (parallel beam 
geometry, with the sample rotating 360° while the X-ray 
detector is stationary). With a 0.5  cm diameter sample 
and 5 × 5 mm field of view, it has a resolution of 2.13 µm.

Micro-CT work can be augmented with submicron-
resolution scans using instruments such as the Rigaku 
Nano 3DX CT scanner. Using a parallel beam X-ray 
geometry, high-flux X-ray source, and optical lens mag-
nification, it can achieve 325  nm resolution, again with 
relatively fast scanning times. To achieve the best reso-
lution, though, requires very small samples (generally 
about 1 mm diameter). While this can give information 
on the tiniest pores, much is lost regarding the repre-
sentativeness of the material with such small samples for 
a material like handmade brick, so nano-CT work is not 
included in this study. Additionally, micro-CT is used to 
image and measure what are defined in the literature in 
various ways as macropores [27, 47, 48]. While micropo-
res and mesopores affect some weathering characteris-
tics, additives commonly used to optimize the physical 
properties of fired bricks and these mixtures, along with 
the heterogeneity expected of handmade materials, often 
lead to the presence of many large pore spaces, making 
micro-CT a good characterization technique to use for 
bricks [11].

3D image analysis
After careful review of options, we selected the Dragonfly 
software package (version 2021) by Object Research Sys-
tems [49], which is free for academic users and has a wide 
range of capabilities. After much experimentation, the 
following multi-stage set of protocols was adopted:

(1)	 Intensity calibration was first done on each image, 
calibrating the mean intensity of pores (darkest 
areas), silica mineral particles (brightest areas), 
and ceramic matrix (in-between areas) to stand-

ard intensities. The main purpose of this step was 
to bring the set of samples closer in intensity values 
and hence reduce the number of separate segmen-
tation models needed.

(2)	 A Region of Interest (ROI) was defined for the sam-
ple to eliminate the background area and exclude 
surface roughness.

(3)	 A segmentation model was created and applied to 
separate the pores, particles, and matrix using the 
“segment with artificial intelligence” tool in Dragon-
fly. To create a model, one slice was selected, and 
then initial Otsu thresholding separated the image 
into classes [50]. This thresholding was edited man-
ually using a paintbrush tool to add or erase phase 
markings that had been incorrectly marked by the 
thresholding tool.

	 Manual editing was aided by comparing the micro-
CT image to images of thin sections from the same 
material, which was especially useful to help discern 
non-clay particles from the matrix. Comparisons 
were also made between the original micro-CT 
scan and enhanced scans that helped to identify 
boundaries of pores and particles that were at the 
margins of spatial resolution (Fig. 4). One of these 
enhanced images was created by applying a set of 
three filters to the original image (gradient-domain 
fusion, histogram balance, and a median filter); the 
second was created using a Noise2Noise regression 
denoising model, which uses deep learning to clean 
up noise on the original micro-CT image [51].

	 Once the image segmentation was satisfactorily 
edited, a selection of machine learning and deep 
learning models were trained on that data. Other 
researchers have found that machine learning 
approaches improve the reliability and accuracy 
of segmentation of pores from solids, especially 
for noisy areas and edges of images, giving a more 

Fig. 4  An original micro-CT scanned brick 2D image (left); the same image after the gradient-domain fusion, histogram balance, and median filters 
were applied (center); and after applying the Noise2Noise deep learning model (right)
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robust classification [52]. After the training was 
completed, a new slice was used to compare the 
segmentation predictions of the models, and the 
model with the best result was promoted for further 
training, again with manual editing when needed. 
The process was continued until a model had been 
refined enough to produce satisfactory segmenta-
tion with no further manual editing required (usu-
ally 3-5 slices were needed). The trained model was 
saved and applied simultaneously to all slices in the 
entire 3D image (Fig.  5). For subsequent samples, 
the deep learning process only had to be repeated 
if none of the already-trained models gave good 
results; the first intensity calibration step meant 
that one trained model could be applied success-
fully to many samples in addition to the one on 
which it was trained.

(4)	 The pore and particle classes were separately 
extracted from the segmentation result. Each was 
then processed to eliminate noise (speckling) and to 
fill in tiny holes in pores or grains that were sim-
ply imaging artifacts. A multi-ROI (multi-Region of 
Interest) was then created for each (i.e., the voxels 

were automatically grouped into components based 
on connectivity). In addition to calculating the vol-
ume percentage of pores and particles within each 
sample, a variety of statistical properties were cal-
culated for individual pores and particles (discussed 
below). These variables were selected based upon 
a survey of the literature and variables reported in 
porosity studies of bricks and other building materi-
als. The initial list of 88 variables recorded for each 
sample at this stage of image analysis included, for 
both pores and particles, the minimum, maximum, 
mean, and standard deviation of pore volume, sur-
face area, volume/surface area, phi, theta, aspect 
ratio, minimum Feret diameter, mean Feret diam-
eter, maximum Feret diameter, minimum orthog-
onal Feret diameter, and minimum orthogonal/
maximum Feret diameter. Of these initial 88 vari-
ables, 16 of them were found to be significant for 
characterizing bricks given the variability between 
replicates. These 16 variables are discussed in detail 
below in the subsection on statistical properties of 
pore multi-ROIs.

Fig. 5  A final, trained deep learning model was applied to all slices simultaneously to segment pores (blue), silica sand particles (red), and matrix 
(yellow)
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(5)	 The percentage of pores accessible to a surface 
versus inaccessible interior ones was calculated by 
first making a version of the Region of Interest that 
was just one pixel wide along all edges (a shell). All 
pores touching a surface in any of the slices were 
then removed, leaving only inaccessible interior 
pores, which were marked with one color; then only 
pores touching the surface shell were considered, 
and they were marked in another color. The volume 
percentage of each was then calculated.

(6)	 Next, a sparse graph of pores was created. This is 
a model of the pore system with spheres represent-
ing pores and lines the connections (pore throats). 
This was used to collect data on five more variables 
regarding the connectivity of pores (also called 
coordination number): the minimum, maximum, 
mean, and standard deviation of pore connectivity, 
and the percentage of unconnected pores.

(7)	 Then a dense graph of pores was created, which 
shows all individual pixels connecting them. Sixteen 
variables were collected from this graph; in addi-
tion to the same five connectivity values as above, 
this graph gives better values on the length of con-
nections and includes tortuosity data (a measure of 
how indirect the connection pathway is). Only ten 
of these variables were found to be significant for 
characterizing the brick types, and these are all fully 
discussed below in the subsection on data from 
dense graphs of pores.

(8)	 The final pore data came from a pore network 
model using OpenPNM, an open-source pro-
gram [53] available as a plug-in within Dragonfly. 
In a pore network model, a simplified form of the 
network of connected pores and throats is used 
to simulate transport in porous materials and to 
predict capillary-controlled multi-phase flow and 
absolute permeability [54]. The model also pro-
vides data such as tortuosity, length of throats, and 
connectivity, which are significant factors in flow 
modeling [53]. We recorded the total number of 
vertices (pores), the number of edges (connections), 
and the ratio of number of connections/number of 
pores, as well as the maximum, mean, and standard 
deviation for connectivity of pores in a sample. An 
additional 21 variables were recorded for aspects of 
pore and connection diameter, equivalent diameter, 
direct length, and volume.

(9)	 Finally, a sparse graph was created for the parti-
cles, with each particle a node and the number of 
particles that touch each other representing con-
nectivity. This gives information about the packing 
of grains. While our research focused on charac-
terizing porosity and pore systems, the amount of 

porosity and the size, morphology, and structure 
of pore systems are sometimes strongly depend-
ent on the natural and added particles present [11]. 
For example, using pore network modeling to study 
micro-CT images after segmentation, Thomson 
et  al. [55] studied the geometry of pore networks 
in two different sandstones. They found that the 
networks consisted of pores situated at the corner 
of sand grains (and the junction of grain-to-grain 
contacts), and elongated pore throats were located 
along grain edges. We visually examined the rela-
tionships of grains and pores.

Statistical analyses
Statistical analyses of all 148 pore variables collected dur-
ing image analysis of each of the 30 0.5 cm3 samples had 
the primary purpose of identifying which of the many 
recorded variables are useful to characterize a brick 
type and to distinguish it from other brick types, given 
the heterogeneity of the bricks and the range of variabil-
ity in porosity from one sample to another within each 
brick. All statistics were done in Python 3 with the Pan-
das package for data handling, SciPy package for analysis 
of variance (ANOVA), and scikit-learn package for lin-
ear and quadratic discriminant analysis. The Matplotlib 
package was used for plots.

The data were first checked for any variables that were 
identical across all samples; these were removed from 
any further data analysis. A one-way ANOVA was then 
used to identify any variables that might be significant 
for characterizing a brick type across all replicates (at 
p < 0.05). A correlation matrix identified which variables 
were highly correlated with each other. Finally, the sig-
nificant values were used in a stepwise linear and then 
quadratic discriminant analysis checked with repeated 
stratified k-folds, to see which combination of variables 
best discriminates between all six brick types.

Ancillary methods
Thin‑section petrography
Three samples (2.5 ×4.5 cm) from each brick were taken 
for thin-section petrography. The thin sections were pre-
pared and mounted on glass slides with blue-dyed epoxy 
(so pores could be readily distinguished) by Spectrum 
Petrographics [56]. One thin section was polished and 
uncovered for examination of opaque metal oxides; two 
were given coverslips. Originally, we planned to use 2D 
image analysis of porosity in thin sections as a compari-
son to micro-CT results [24, 57, 58]. However, it quickly 
became apparent that since such images only show a sin-
gle 2D slice through the material, they were simply not 
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very comparative to images of the 3D pore networks or 
to connectivity within those networks that micro-CT 
images provide [4] (2D image analysis using the same 
Dragonfly software gave pore area percentages that were 
always significantly lower than results obtained with 3D 
image analysis of micro-CT scans).

A major advantage of thin sections, however, is that 
producing them permits identification of the particles 
present. This proved to be useful in the segmentation 
of particles in micro-CT images. Interpreting the grey-
scale densities of minerals, lithics, and other particles 
and separating them from a ceramic matrix is much 
easier when the micro-CT scan can be displayed next 
to a petrographic thin section, especially when particles 
are similar in density to the matrix. Most useful was an 
entire thin section scanned at low magnification using a 
Pathscan Enabler 5 geological slide scanner, at a resolu-
tion of 2.54 μm/pixel (10,000 × 10,000 dpi). This scan was 
displayed on one monitor while components in micro-
CT images were being segmented for deep learning in 
Dragonfly on the other monitor. When necessary, miner-
als, lithics, or other thin section particles were examined 
more closely in images captured at higher magnification 
using a Nikon Eclipse 50i POL microscope system.

Accelerated weathering of samples
One advantage of micro-CT is that since it is non-
destructive, the same sample can be imaged before and 
after accelerated aging and/or treatment applications to 
understand what internal changes the brick may have 
gone through [38, 41, 42, 59]. After the initial micro-CT 
scanning work was completed, we selected one of each of 
the modern handmade brick 0.5 cm3 samples for accel-
erated weathering followed by re-scanning the samples 
with the same field of view as before to see if any changes 
in porosity could be observed. The accelerated weather-
ing was done in a QUV weatherometer for 1000 h, con-
tinuously cycling 8  h of UV exposure at 70ºC with 4  h 
of condensation at 50ºC. Changes in volume percentage 
porosity and porosity accessible to the surface due to the 
weathering were recorded.

Results and discussion
It was apparent during the image analysis that hand-
molded and historic bricks are very heterogeneous mate-
rials, and analysis of the data confirmed that impression. 
Coupled with the fact that the best spatial resolution with 
micro-CT requires relatively small samples, clearly repli-
cation is important. It is therefore concerning that most 
papers reporting micro-CT on bricks and other cultural 
materials appear to analyze only one sample per object. 
It proved to be important that five replicates from each 
brick were analyzed, so that variation between samples 

from an individual brick could be taken into account in 
identifying which variables might work best to character-
ize a brick and distinguish it from other brick types.

Of the 148 variables recorded, 41 variables related to 
pores proved to be significant for characterizing brick 
types at the p < 0.05 level. For 20 out of the 41 variables, 
the Shapiro-Wilks test for normality had p values of < 0, 
indicating that the distribution may be non-normal. 
However, because this is an initial screening experiment 
intended to explore what variables might be significant 
for differentiating between non-randomly selected brick 
types in the face of within-brick variability, we did not 
feel the need to explore possible data transformations.

For particles, 17 variables were found to be signifi-
cant in distinguishing brick types. These included the 
particle volume percentage and standard deviation, and 
two variables from the sparse graph of particles (con-
nectivity mean and standard deviation). Connectivity 
with regard to particles provides information about the 
packing of grains, which is related to production meth-
ods and affects use functions. The other 13 significant 
particle variables relate to various size and morphology 
characteristics and distributions identified in the parti-
cles multi-ROI. Since this paper focuses on the work with 
pores, the particle variables are not discussed further 
here; however, these results do indicate that the micro-
CT technique is sensitive enough to be able to iden-
tify potentially significant data about non-clay particles 
within a ceramic matrix, so this will be one area of con-
centrated future experimentation.

The 41 significant variables are discussed in the five 
sections below: porosity percentages; statistical proper-
ties of pore multi-ROIs; connectivity data from the sparse 
graphs of pores; data from the dense graphs of pores; and 
data from pore network modeling using OpenPNM. Fol-
lowing the main results for the 41 pore variables below, 
some additional statistical analyses are briefly discussed.

Porosity percentages (volume fraction)
The volume percentage (volume fraction) of pores in 
each sample was calculated by comparing the region 
occupied by pores with the entire segmented region of 
interest. This proved to be a significant variable; Table 1 
shows the mean volume percent pores for each brick 
type. Brick F stands out with the highest mean value. 
As described in step (5) of the 3D image analysis section 
above, the percentage of pores accessible to the surface 
versus inaccessible interior pores was calculated, and 
both the percentage accessible to the surface and the 
ratio of surface-accessible to the inaccessible interior 
pores were found to be significant. The means for these 
variables for each brick type are also given in Table  1, 
where again brick F stands out with the highest values. 
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Figure  6 illustrates these differences. Table  2 shows the 
importance of replication. For all brick types, there is 
variation due to inhomogeneity of bricks where porosity 
varies as a result of varying size, composition, or cluster-
ing of additives; or due to fabrication methods, uneven 
firing temperatures, or uneven deterioration. Clearly, a 
single micro-CT analysis might be misleading; the more 

samples that can be analyzed, the better the group means 
will capture the inherent variation.

Statistical properties of pore multi‑ROIs
The 16 variables from an analysis of the statistical proper-
ties of the connected components in the pore multi-ROIs 
that were found to be significant include:

•	 Maximum pore volume;
•	 Maximum and standard deviation of pore surface 

area (interpolated) (i.e., outside area of the pores);
•	 Mean and standard deviation of volume-to-surface 

area (interpolated) ratio;
•	 Mean and standard deviation of aspect ratio (a per-

fect cube or sphere has an aspect ratio of 1.0, a square 
or circle 0.5, and a perfect rod of one voxel wide or a 
point is 0.0);

•	 Standard deviation of minimum Feret diameter 
(minimum caliper diameter, or shortest distance 
between any two points along each pore’s boundary), 
mean and standard deviation of mean Feret diam-

Table 1  Mean volume percentage of pores in each brick type, 
mean pores accessible to the surface, and mean ratio of the 
surface-accessible pores to inaccessible interior pores (n = 5 for 
each brick type)

Brick Pore vol. % Percent 
accessible to 
surface

Ratio of the surface 
accessible/inaccessible 
interior pores

A 18.5 15.9 9.0

B 23.7 22.4 31.8

C 16.9 14.9 7.6

D 21.0 18.2 18.6

E 21.0 18.9 10.5

F 36.8 36.1 65.8

Fig. 6  A sample from brick A (top row) with 17.8% pores, 15.5% of them accessible to the surface (blue) with a surface/interior pore ratio of 6.7. 
Pores not accessible to the surface are in red. In the center images, surface-accessible pores are made partially transparent so interior ones are more 
visible; on the right, only the interior pores are shown (2.3%). The bottom row shows a sample from Brick F with 32.8% pores, 32.4% of which are 
accessible to the surface, leaving only 0.4 vol.% as interior pores inaccessible to the surface (surface/interior ratio of 81)
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eter (mean value of the minimum and maximum 
Feret diameters of each pore’s boundary); and mean 
and standard deviation of maximum Feret diameter 
(longest distance between any two points along a 
pore’s boundary, or maximum caliper diameter);

•	 Mean and standard deviation of the minimum 
orthogonal Feret diameter (shortest distance between 
any two points along each pore’s boundary that are 
orthogonal to the pore’s maximum Feret diameter); 
and

•	 Mean and standard deviation of the minimum 
orthogonal/maximum Feret diameter (ratio of the 
minimum orthogonal Feret diameter to the maxi-
mum Feret diameter, which can provide a good indi-
cation of the elongation of a pore).

As Table  3 shows, Brick F again stands out, having 
either the lowest (in italics) or highest (in bold) means 
for all but one of these variables. Figure 7 illustrates one 
example, contrasting samples from Brick A and from 
Brick F with a variable that indicates pore elongation 
(the ratio of the minimum orthogonal to the maximum 
Feret diameter).

Connectivity data from sparse graphs of pores
Table 4 shows the means for each brick type for the four 
significant connectivity (number of pores with which a 
given pore shares throat/connection voxels) variables 
obtained from sparse graphs of pores. Bricks E and F 
have noticeably higher maximum connectivity, with F 
having the highest; the same is true for the mean connec-
tivity and the standard deviation. The reverse is true for 
the percentage of unconnected pores (Bricks E and F are 
the lowest, with F considerably lower). Figure 8 contrasts 
a sample from group A (with 10.8 vol.% pores), which 
has a maximum connectivity of 15, mean connectiv-
ity of 1.67, and 6% of pores unconnected (isolated) with 
a sample from group F (32.8 vol.% pores) which has a 
maximum connectivity of 46, mean connectivity of 3.89, 
and no unconnected pores. Spheres (pores) are sized 
and color-coded by number of connections (from low to 
high: purple, dark blue, light blue, green, yellow, orange, 
red), while the rods indicating connections are sized and 
color-coded by length.

Data from dense graphs of pores
Ten variables recorded from the dense graphs of pores 
were significant (Table  5). The connectivity variables 
again show bricks E and F with much higher pore con-
nectivity than the other bricks. Tortuosity variables char-
acterize the convoluted pathways of connections as a 
ratio of the length of a straight-line distance between two 
pores versus the geometric complexity present. The three 
historic bricks (D, E, and F) tend to have lower values for 
tortuosity than do the modern hand-molded bricks. Fig-
ure 9 compares a sample from Brick A with higher throat 
tortuosity to a sample from brick F that has a lower tortu-
osity. Table 5 also shows that the pore connections in the 
three historic bricks (D, E, and F) have lower mean values 
for segment Euclidean lengths than do the three modern 
hand-molded bricks. This refers to the line length of the 
segments connecting two branches (throats) or connect-
ing a branch with an end node (pore); one exception is 
the mean edge segment Euclidean length standard devia-
tion for Brick C.

Data from pore network modeling with OpenPNM
The last eight variables are from the pore network mod-
eling step using the OpenPNM program available within 

Table 2  Total volume percentage of pores, percent accessible to 
the surface, and ratio of surface-accessible to interior pores

Brick Pore vol. % Percent 
accessible to 
surface

Ratio of the surface 
accessible/inaccessible 
interior pores

A 14.1 12.1 6.1

A 23.4 21.6 12.0

A 10.8 4.8 0.8

A 26.6 25.3 19.5

A 17.8 15.5 6.7

B 29.4 28.8 48.0

B 27.8 27.2 45.3

B 11.0 7.9 2.5

B 22.9 22.4 44.8

B 27.2 25.8 18.4

C 16.7 14.9 8.3

C 18.5 16.9 10.6

C 17.5 15.6 8.2

C 16.3 14.2 6.8

C 15.7 12.7 4.2

D 11.3 6.2 1.2

D 21.2 19.1 9.1

D 37.3 36.8 73.6

D 18.8 15.7 5.1

D 16.3 13.1 4.1

E 8.3 5.5 2.0

E 27.1 25.7 18.4

E 23.6 20.9 7.7

E 22.2 20.1 9.6

E 23.7 22.2 14.8

F 32.8 32.4 81

F 37.2 36.7 73.4

F 34.2 32.5 19.1

F 46.0 45.6 114.0

F 34.0 33.2 41.5
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Dragonfly. The number of vertices and connections, the 
ratio of number of throats/number of pores, edge direct 
length mean and standard deviation, edge equivalent 
diameter mean, and vertex equivalent diameter mean 
and standard deviation were all significant at p < 0.05. 
The means for the five samples in each group (Table  6) 
show much variation among the brick types, with brick 
F again especially standing out. Figure  10 compares a 
pore network model of a sample from brick A with one 
from brick F. The size of the pores in F are often larger 
than in A (equivalent diameter mean 303 µm for F versus 
230 µm for A) and its throats/connections are longer and 
larger (direct length mean of 862 µm for F versus 398 µm 
for A, and equivalent diameter mean 180 µm for F ver-
sus 119 µm for A). In Fig. 10, the connections are color 
coded by direct length. We can see that the pore network 
in the sample from brick A has many shorter connections 
(purple and dark blue) along with a few longer ones (light 
blue, green, and yellow). In contrast, the sample from F 
shows fewer connections in purple and dark blue and 
more in light blue, green, and yellow, and even a few that 
are orange and red (highest end of the scale).

Any of the graphs or modeling methods used for pores 
can be applied to the particles within a brick as well, with 
each particle as a node and the number of particles that 
touch each other representing connectivity. This gives 
information about the packing of grains, which can be 
affected by production methods and can in turn affect the 
material properties of a brick. In Fig. 11 the pore network 
model from OpenPNM is superimposed with the particle 
network model, to examine the relationship of particles 

Table 3  Significant (p < .05) variables from analysis of the statistical properties of the pore multi-ROIs

The lowest value of the means for each variable is in italics; the highest value is in bold. Brick data = mean of 5)

Measured variables Brick A Brick B Brick C Brick D Brick E Brick F

Vol. max µm3 1.20E+10 1.28E+10 0.93E+10 1.04E+10 1.46E+10 2.33E+10
Surface area (interp.) max µm2 7.28E+08 7.33E+08 6.11E+08 8.17E+08 11.3E+08 16.8E+08
Surface area (interp.) SD µm2 2.69E+04 3.88E+04 2.80E+04 3.00E+04 3.61E+04 6.12E+04
Vol./sur area (interp.) mean µm 3.31 3.32 3.24 3.18 3.06 2.62

Vol./sur area (interp.) SD µm 1.79 1.77 1.76 1.44 1.30 0.90

Aspect ratio mean 0.168 0.164 0.160 0.160 0.154 0.096

Aspect ratio SD 0.200 0.202 0.202 0.198 0.192 0.168

Min Feret diameter SD µm 27.3 31.0 29.0 25.2 22.3 18.4

Mean Feret diameter mean µm 36.7 35.6 34.6 34.8 32.9 24.6

Mean Feret diameter SD µm 45.7 51.3 45.4 40.6 35.3 28.5

Max Feret diameter mean µm 45.2 43.3 42.2 42.3 39.8 29.5

Max Feret diameter SD µm 59.2 61.7 56.0 49.9 43.1 33.7

Min ortho Feret diameter mean µm 25.1 24.9 24.3 24.4 22.6 18.5

Min ortho Feret diameter SD µm 28.5 32.0 29.6 25.9 23.1 19.1

Min ortho/max Feret diameter mean µm 0.650 0.664 0.664 0.666 0.656 0.702
Min ortho/max Feret diameter SD µm 0.152 0.148 0.150 0.144 0.148 0.138

Fig. 7  The (mesh) pore multi-ROI from a sample from group A 
(top) and group F (bottom), color-coded by minimum orthogonal/
maximum Feret diameter ratio indicating pore elongation. Both have 
pores mainly near the high end of the scale (orange). However, the 
sample from Brick A has a significant number of pores ranging from 
orange down to the lower colors of the scale (yellow, green, blue, and 
purple). The one from Brick F has only a few small pores in the yellow, 
green, and blue range, and none are purple
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to the pore system. Here the connections are removed, 
pores are sized and color-coded by diameter, and the 
black spheres are quartz sand grains that are sized by vol-
ume. For brick A, the largest sand grains tend to be near 
the largest (red) pores; the smallest ones tend to be on 
the interior within the area of the smallest (purple) pores. 
For brick F, which has more very large sand grains and 
pores, the largest sand grains are in fact touching large 

pores, and some large pores are in contact with multiple 
grains. As clay tends to pull away from large non-plastic 
particles during drying and firing, it makes sense that 
large particles might initiate the formation of large pores.

While this work is focusing on characterizing poros-
ity and pore systems, the amount of porosity and the size, 
morphology, and structure of pore systems are strongly 
dependent on the natural and added particles present [11].

Table 4  Significant (p < .05) connectivity data from the sparse graphs of pores (Brick data = mean of 5)

Measured Variables Brick A Brick B Brick C Brick D Brick E Brick F

Pore connectivity maximum 22.4 22.2 22.6 23.0 31.8 38.2

Pore connectivity mean 2.29 2.55 2.47 2.55 2.71 3.49

Pore connectivity SD 1.58 1.58 1.71 1.71 1.94 2.18

Percentage unconnected pores 3.0 2.8 2.8 2.8 2.4 0.3

Fig. 8  Sparse graphs of pores: Left, a sample from brick A, with relatively low connectivity values and a low volume percentage of pores. Some 
isolated pores can be seen, along with many pores with only one or two connections. Right, a sample from brick F, with about three times higher 
connectivity values and volume percentage of pores. There are no isolated pores, and the system is packed very full with connected pores

Table 5  Significant (p < .05) data from the dense graphs of pores (Brick data = mean of 5)

Measured Variables Brick A Brick B Brick C Brick D Brick E Brick F

Vertex connectivity maximum 25.6 23.4 26.2 24.6 38.2 43.6

Vertex connectivity mean 2.07 2.11 2.12 2.14 2.19 2.36

Vertex connectivity SD 0.816 0.774 0.864 0.922 1.08 1.27

Vertex segment tortuosity mean 1.25 1.25 1.24 1.24 1.23 1.23

Vertex segment tortuosity SD 0.418 0.370 0.388 0.352 0.366 0.346

Vertex segment euclidean length mean µm 73.7 78.6 70.7 63.0 63.0 65.6

Vertex segment euclidean length SD µm 62.4 57.1 54.3 48.6 51.0 50.1

Edge segment tortuosity mean 1.29 1.28 1.27 1.27 1.26 1.24

Edge segment tortuosity SD 0.422 0.370 0.388 0.348 0.364 0.334

Edge segment euclidean length SD µm 51.4 45.4 37.1 36.3 39.1 37.6
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Fig. 9  Dense graphs of pores. Left, a sample from brick A, with a relatively high tortuosity. Many of the connections are twisting and taking a 
convoluted rather than direct path. Right, the sample from brick F, with lower tortuosity, has more connections that take a direct straight line 
between pores

Table 6  Significant (p < .05) pore network modeling variables from OpenPNM graphs of pores

Each entry is the means of 5 brick samples

Measured Variables Brick A Brick B Brick C Brick D Brick E Brick F

Number of vertices (pores) 4,835 2,703 4,015 4,012 3,057 1,561

Number of edges (throats) 25,683 12,877 21,030 22,496 16,180 6,564

Ratio of number of throats/number of pores 5.46 4.80 5.22 5.38 5.32 4.16

Edge direct length mean µm 416 504 442 516 505 701

Edge direct length SD µm 287 403 319 365 365 477

Edge equivalent diameter mean µm 124 125 121 137 141 155

Vertex equivalent diameter mean µm 242 241 237 257 259 278

Vertex equivalent diameter SD µm 170 236 190 216 215 292

Fig. 10  Pore network models from OpenPNM, with  connections sized and color-coded by direct length and pores by equivalent diameter. 
Left, a sample from brick A with many shorter connections between pores (purple and dark blue). Right, a sample from brick F with more longer 
connections (light blue, green, yellow, orange, and red) and higher equivalent diameter of connections and pores
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Additional statistical analyses
As discussed above, ANOVA identified the variables that 
are statistically significant in characterizing brick types 
and distinguishing them from other brick types in the 
face of the internal variation within each brick and simi-
larities between bricks. Subsequently, those significant 
values were used for a stepwise linear and then quadratic 
discriminant analysis checked with repeated stratified 
k-fold cross validations to identify the combination of 
variables that can best discriminate between bricks. The 
stepwise linear discriminant analysis procedure found 
a combination of five variables best for predicting brick 
type (accuracy level of 64.4%, or an average of 19/30 
samples):

(1)	 Volume percentage pores accessible to the surface
(2)	 Pore system dense graph edge scalar values seg-

ment tortuosity standard deviation
(3)	 Pore system sparse graph connectivity standard 

deviation
(4)	 Pore system dense graph vertex scalar values con-

nectivity standard deviation
(5)	 Pore system dense graph vertex scalar values con-

nectivity mean

The last three variables are highly correlated with each 
other, which is unsurprising since they all relate to pore 
connectivity. With only the first three pulled into the dis-
criminant analysis, accuracy was still about 60% (an aver-
age of 18/30 samples). The best quadratic discriminant 

analysis was less accurate. While this is only an explor-
atory screening study, and the discriminant analysis 
results are not strong enough to rely on heavily in the 
conclusions, they do suggest that some specific param-
eters related to brick properties may be especially use-
ful to continue examining in future studies. The volume 
percentage of pores accessible to the surface (versus 
inaccessible interior pores) is likely to have an impact on 
durability of a brick, since more surface-accessible pores 
creates more opportunities for ingress of water, salts, and 
pollutants. Tortuoisity is a measure of directness of con-
nections between pores. Here the standard deviation was 
the best discriminator – the spread of values from those 
representing twisting and convoluted connections versus 
those representing a direct straight line between pores. 
Differences between bricks in this variable can create dif-
ferences in the properties of permeability and diffusion. 
The final three discriminating variables, which are all 
strongly correlated with each other, indicate connectivity 
(number of other pores that each pore is connected to), 
which can impact some important functional properties 
of a brick such as permeability, thermal conductivity, and 
mechanical strength.

Conclusions
The primary conclusions are related to the original goals 
of this research: (1) to identify procedures for creating 
optimal images of pores in bricks using HR micro-CT; 
(2) to develop protocols for 3D image analysis to illus-
trate significant qualities of brick pores and to obtain 

Fig. 11  Pore network models from OpenPNM superimposed with OpenPNM models of particles. Black spheres are quartz sand grains sized by 
volume, pore connections are removed, and pores are color-coded by diameter (from small to large: purple, dark blue, light blue, green, yellow, 
orange, red). Left, a sample from brick A. Right, a sample from brick F with more very large sand grains and pores; often large grains and pores are 
touching, with some large pores in contact with multiple grains
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quantitative data on those pores; and (3) to clarify how 
HR micro-CT and the accompanying 3D image analysis 
data can benefit the study of porosity in historic bricks 
by identifying which research questions can best be 
addressed by this approach, the kinds of information that 
can be obtained, and how these analyses can best supple-
ment other analytical techniques.

Protocol recommendations based on experience gained 
in this exploratory study
The first crucial choice in establishing a brick micro-CT 
procedure was found to be the decision about the size of 
each sample to be scanned. Larger sizes reveal more vari-
ability and hence are more representative of the entire 
brick, but they bring lower spatial resolution. For our 
primary instrument, we concluded that best results were 
achieved with samples of about 0.5 cm3 for a 5 × 5  mm 
field of view (and 10 µm spatial resolution), then includ-
ing five replicates for each brick type.

While we also had access to a Rigaku Nano 3DX CT 
instrument with 325 nm spatial resolution possible, since 
that level of resolution requires sample sizes of about 
1 mm, we deemed it not useful for our current purpose 
of characterizing the porosity of a brick. Too much would 
be lost in the representativeness of samples, and it would 
be impossible to capture the larger pores, long cracks, 
and large particles surrounded by pore spaces where the 
clay pulled away from the particle during drying and fir-
ing. This instrument might, however, have a more limited 
use in examining very small pores.

Experiments with using our regular instrument for 
analysis of larger samples (1 cm3 with 20 µm spatial reso-
lution, and 2.5 cm3 with 50  µm spatial resolution) were 
not satisfactory for porosity characterization. It was more 
difficult to segment many of the pores at those lower spa-
tial resolutions. These resolution and segmentation prob-
lems led to more variable results.

We were also able to conduct experiments on 0.5 cm-
diameter samples scanned on a Rigaku CT laboratory 
HX130 instrument with better spatial resolution (2.13 µm 
voxel size). These experiments produced excellent scans, 
improving the visibility of pores for segmentation. This 
would perhaps be a direction to go in for future studies 
for the quality of resulting scans. However, the comput-
ing power needed for image analysis of these higher reso-
lution scans is an issue for consideration. With our usual 
instrument and 10 µm spatial resolution, the deep learn-
ing process to create a new model, using the entire scan 
dimensions, required about 2.5 h; then full segmentation 
of all slices required about five minutes. It was therefore 
practical to try out multiple existing models on a scan 
to see if any already-created ones worked well. In con-
trast, with the higher-resolution scans from the HX130 

instrument, our computer was not powerful enough to 
do deep learning on the entire scan. Instead, a smaller file 
had to be created of a portion of the original scan. Sub-
sequently applying a segmentation model on the entire 
region of interest of the scan required seven hours ver-
sus the previous five minutes. Displaying the entire scan 
as a multi-ROI mesh also proved to be impossible due to 
computer memory issues, so only part of the processed 
scan could be viewed. File sizes were about 0.3  GB for 
our usual scans but about 27.5  GB for the higher-reso-
lution scans. To use these larger files for deep learning, 
segmentation, and the full 3D image processing proto-
cols requires investment in greatly increased computing 
power for the laboratory (or obtaining access to high-
performance computing facilities).

The next crucial choice in a micro-CT procedure for 
characterizing pores in a historic brick is to include suf-
ficient replication to account for the high amount of 
variation typically found within a single brick, especially 
given the need for smaller samples to attain better spa-
tial resolution. Yet, the literature indicates this is usually 
not done. We used five replicates for each brick, based on 
observations in the preliminary experimentation phase; 
additional experimentation could look at whether more 
replicates might be useful. Before one can compare mul-
tiple bricks, it is important to ensure that the full range of 
variation within each individual brick has been captured.

The Dragonfly 3D image analysis software performed 
well for these experiments. Other software packages 
would likely work as well, but since this one served our 
needs and is free for academic or non-profit users, we did 
not experiment with others. Nor did we need to spend 
time developing in-house image analysis algorithms 
since these are already available. Gaining expertise on all 
aspects of the image analysis package we wanted to use 
was a time-consuming task, so we did not expend time 
learning and experimenting with multiple software pack-
ages. The ability to do intensity calibration on all images 
with this software, bringing each image closer to the 
intensity values of a standard, helped reduce the num-
ber of segmentation models needed. Given the range of 
intensities of our samples, a single segmentation model 
did not work for all samples. However, the intensity cali-
bration procedure did reduce the number of deep learn-
ing models needed to a total of nine for the 30 samples, 
saving considerable time (since the deep learning process 
required about 2.5 h/sample, about 52.5 h were saved by 
being able to use an existing segmentation model on 21 
of the samples).

Creating segmentation models with the Dragonfly soft-
ware was highly successful. Earlier in the experimentation 
process, when we tried to use only simple thresholding, 
the complexity of the samples prevented clear separation 
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of the matrix, pores, and particles. In contrast, results 
were greatly improved by using the software’s capabil-
ity of adding both machine learning decision trees such 
as Random Forest algorithms and deep learning models 
with convolutional neural networks using Nvidia Ten-
sorflow to accelerate the modeling. We were able to start 
with an initial simple Otsu thresholding and then manu-
ally edit the results with a paint tool as a fast approach to 
creating dense training data. There is a library of machine 
learning and deep learning models available within Drag-
onfly to select for training, or one can create a model or 
import one developed on a similar sample. At each stage 
of training, one can predict how each model will perform 
on a new slice, then promote and manually edit the best-
performing one. By the third slice, we usually did not 
need to do any further editing and the model was ready 
to apply to all slices of the sample.

However, the segmentation process was never “easy”. 
The main challenge is that one must visually decide 
where the boundaries are between pores and ceramic 
matrix, and hence whether the segmentation is correct. 
If we had only been interested in the larger pores, there 
would have been little challenge, since those were obvi-
ously and consistently visually different from the matrix. 
However, since we were attempting to segment pores 
down to the limits of our spatial resolution, the deci-
sion about what to consider pores and what to consider 
matrix was often difficult. It has been well-documented 
that segmentation always has some inherent error 
because it is based on human perception of the differ-
ence in appearance between pores and matrix, and it can 
also be affected by the presence of noise and other imag-
ing effects [38]. However, the many recent advances in 
image analysis algorithms and approaches have also been 
recognized. Nickerson et  al. [52] noted that machine 
learning approaches improve the reliability and accu-
racy of segmentation of pores from solids, especially for 
noisy areas and edges of images. Our assessment is that 
a larger advantage of machine learning and deep learning 
approaches is the ability to segment one area or slice and 
then train the model on that data, then keep training and 
improving the model so that ultimately it can be applied 
to all slices of the micro-CT image. Judging the segmen-
tation success will always be a matter of visual assessment 
of the accuracy of segmentation choices.

Having thin sections and enhanced images available to 
compare with the original raw image being used for seg-
mentation helped in making the initial decisions about 
where to delineate pore boundaries. After experiment-
ing with many image filters and filter combinations, we 
found that the best results for our samples came from a 
sequence of three image filters—gradient-domain fusion, 
histogram balance, and a median filter. Even better was 

applying the Noise2Noise regression denoising model, 
using deep learning to clean up noise on the original 
image using a copy of the image itself [51], available 
within our software package. Comparing these images 
to the original helped in making the decisions about seg-
mentation boundaries.

Earlier in the project, we segmented all 30 samples 
using the scans that had been processed with the image 
filters, thinking those would be easier to segment. After-
wards, we learned that imaging experts do not recom-
mend using processed images for segmentation (although 
that is often reported in the cultural heritage literature). 
We redid the analyses with the raw images, this time 
using the filtered ones only as an aid for making segmen-
tation decisions. This second round of analyses, using the 
raw images, was indeed better—there was less variation 
in results for replicates within each brick type, leading 
to more variables being significant (in the first round of 
analyses with filtered images, only 12 pore variables were 
significant at p < 0.05, whereas in the second round with 
raw images, 41 were).

Being able to perform a variety of different 3D image 
analysis procedures within one software package was 
quite useful. Most existing micro-CT studies of brick 
pores include only total volume porosity and a variety 
of statistical properties of pore multi-ROIs related to the 
size and shape of pores. However, we found that the pore 
variables that proved to be significant came from many 
types of measurements and permutations on image anal-
ysis: the calculation of total volume percent of the region 
of interest occupied by pores, the calculation of the per-
centage of those pores that were accessible to the surface 
versus interior pores inaccessible to the surface (which 
requires having samples with an outer surface), calcula-
tion of statistical properties of pore multi-ROIs relating 
to pore size and morphology variables, connectivity data 
from sparse graphs of pores, data from dense graphs of 
pores (connectivity of pores and the length and tortuosity 
of connections), and data from pore network modeling 
using the OpenPNM plug-in available within the soft-
ware (number and diameter of pores and number, length, 
and diameter of connections).

Porosity characterization conclusions
Multiple measures of pore size and shape were signifi-
cant. This is not surprising because pore size and shape 
are difficult to ascertain with single measurements, given 
that pores are usually irregular and part of an intercon-
nected network [16, 60]. The ANOVA was crucial in 
determining which of the many variables recorded were 
in fact significant in characterizing and distinguishing 
between bricks, given the variability within each brick.
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The inclusion of variables related to pore connectivity, 
a measure of the complexity of the pore structure and 
related to the number of independent paths between two 
points within the pore space [61], proved to be important 
in characterizing bricks. For example, brick F had a con-
siderably lower number of unconnected pores compared 
to the other bricks (with bricks A-E having a mean per-
centage of unconnected pores ranging from 2.4 to 3.0%, 
while the mean of brick F was 0.3%). Since brick F may 
have been made on-site at a farm using a home-con-
structed kiln with lower and more variable temperatures 
than the other bricks, which were likely made at a factory 
with a permanent/professional kiln, this may be an indi-
cator of a different firing regime.

The coordination number/connectivity (number of 
pore throats to which each pore is connected); the num-
ber of isolated, unconnected pores; and the length, equiv-
alent diameter, and tortuosity (shortest path analysis) of 
connections were obtained through the sparse and dense 
graphs of pores and with the pore network modeling 
plug-in. In addition to characterizing bricks, these vari-
ables can be used to study deterioration mechanisms. For 
example, large pores give a material higher permeability 
[55]; more connected versus unconnected pores, regard-
less of total porosity, creates a material that is more prone 
to deterioration and less durable to weathering [62]. All 
these variables are significant factors in flow modeling 
[54], and so are useful in understanding how water might 
be transported through and affect bricks.

While initially, we had been planning to compare 
porosity data from thin-section petrography to micro-
CT data, it became clear early in the project that such 
a comparison would not be very useful. A single slice 
through the material, even if it is longer and wider than 
the micro-CT images and provides a higher magnifica-
tion, cannot reproduce the volume percentages, size, 
shape, and connectivity data available in 3D analysis 
of the 3D brick materials. In fact, we found that image 
analysis (using the same Dragonfly software) of a single 
2D thin section was often measured at about half of the 
total volume porosity of a micro-CT scan from the same 
brick. However, the thin sections were extremely helpful 
in making segmentation decisions, especially about par-
ticles, and would be especially helpful in projects where 
particles were a major focus since the thin section data 
can be used to help distinguish between particle types in 
the micro-CT scans (where particles of similar density to 
each other and to the matrix can be difficult to discern 
for segmentation). Thin section petrography is also cru-
cial for identifying the minerals, lithics, and organic par-
ticles present, whereas micro-CT scans are of limited use 
for that purpose.

While we expected to find an increase in porosity 
with the accelerated weathering of samples, in the three 
samples of modern hand-molded bricks studied, only 
one sample did show a porosity increase. To examine 
this issue further would require additional replication; 
it is likely that a longer period of accelerated aging is 
needed, including adding multiple freeze–thaw cycles. If 
increased porosity continues to be found, then it may be 
useful to look at other parameters such as surface-acces-
sible/inaccessible interior pore ratios and connectivity 
changes resulting from weathering, so this will be a focus 
of future work.

This project identified a set of protocols for creating 
good working images of pores in bricks in micro-CT 
scans. It also provided a detailed set of protocols for per-
forming 3D image analysis of those scans for qualitative 
and quantitative data and for identifying which variables 
are statistically significant in characterizing bricks. A 
variety of types of pore data were found to be potentially 
important for characterizing bricks through micro-CT 
and 3D image analysis. These data can also potentially be 
used to identify bricks that may be more susceptible to 
weathering and deterioration due to pore structures and 
systems that better enable movement of water into and 
throughout the brick. Future research will focus on the 
addition of selected nano-CT measurements to assess 
the population of very small pores that are missed due 
to the spatial resolution of micro-CT [9], expanded stud-
ies of the effects of accelerated weathering on brick pore 
systems, and use of the software on a high-performance 
supercomputer cluster to enable faster image analysis of 
micro-CT scans of higher spatial resolution that are dif-
ficult to analyze on a laboratory computer.
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