Scott DA. Copper and bronze in art: corrosion, colorants and conservation. Los Angeles: Getty Conservation Institute; 2002.
Google Scholar
Selwyn LS. Corrosion of metal artifacts in buried environments. In: ASM Handbook. Corrosion: environments and industries, vol. 13C. New York: ASM International; 2006. p. 306–22.
Chase WT. Chinese bronzes: casting, finishing, patination and corrosion. In: Scott DA, Podany J, Considine BB, editors. Ancient and historic metals: conservation and scientific research. Los Angeles: Getty Conservation Institute; 1994. p. 85–118.
Google Scholar
Ingo GM, De Caro T, Riccucci C, Angelini E, Grassini S, Balbi S, Bernardini P, Salvi D, Bousselmi L, Gener M, Gouda VK. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl Phys A. 2006;83:513–20.
Article
Google Scholar
Campanella L, Alessandri OC, Ferretti M, Plattner SH. The effect of tin on dezincification of archaeological copper alloys. Corros Sci. 2009;51:2183–91.
Article
Google Scholar
Robbiola L, Portier R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy-patina-environment system. J Cult Heritage. 2006;7:1–12.
Article
Google Scholar
Quaranta M. On the degradation mechanisms under the influence of pedological factors through the study of archaeological bronze patina. PhD Diss., University of Bologna; 2009.
Papadopoulou O, Vassiliou P, Grassini S, Angelini E, Gou V. Soil-induced corrosion of ancient Roman brass—a case study. Mater Corros. 2016;67:160–9.
Article
Google Scholar
Wang Z, Li Y, Jiang X, Pan C. Research progress on ancient bronze corrosion in different environments and using different conservation techniques: a review. MRS Adv. 2017;2:2033–41.
Article
Google Scholar
Grousset S, Bayle M, Dauzeres A, Crusset D, Deydier V, Linard Y, Dillmann P, Mercier-Bion F, Neff D. Study of iron sulphides in long-term iron corrosion processes: characterisations of archaeological artefacts. Corros Sci. 2016;112:264–75.
Article
Google Scholar
von Horn C, Holstein ICC. Dents in our confidence: the interaction of damage and material properties in interpreting use-wear on copper-alloy weaponry. J Archaeol Sci. 2017;81:90–100.
Article
Google Scholar
Robbiola L, Blengino JM, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros Sci. 1998;40:2083–111.
Article
Google Scholar
Piccardo P, Mille B, Robbiola L. Tin and copper oxides in corroded archaeological bronzes. In: Dillmann P, Béranger G, Piccardo P, Matthiesen H, editors. Corrosion of metallic heritage artefacts: investigation, conservation and prediction for long-term behaviour. European Federation of Corrosion Publication 48. Cambridge: Woodhead Publishing; 2007. p. 239–62.
Chapter
Google Scholar
Oudbashi O, Emami SM, Ahmadi H, Davami P. Micro-stratigraphical investigation on corrosion layers in ancient bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Heritage Sci. 2013;1:21.
Article
Google Scholar
Scott DA. A review of copper chlorides and related salts in bronze corrosion and as painting pigments. Stud Conserv. 2000;45:39–53.
Google Scholar
Alberghina MF, Barraco R, Brai M, Schillaci T, Tranchina L. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes. Spectrochimica Acta Part B. 2011;66:129–37.
Article
Google Scholar
Soffritti C, Fabbri E, Merlin M, Garagnani GL, Monticelli C. On the degradation factors of an archaeological bronze bowl belonging to a private collection. Appl Surf Sci. 2014;313:762–70.
Article
Google Scholar
Doménech-Carbó A, Doménech-Carbó MT, Martínz-Lázaro I. Electrochemical identification of bronze corrosion products in archaeological artefacts—a case study. Microchimica Acta. 2008;162:351–9.
Article
Google Scholar
Angelini E, Rosalbino F, Grassini S, Ingo GM, De Caro T. Simulation of corrosion processes of buried archaeological bronze artefacts. In: Dillmann P, Béranger G, Piccardo P, Matthiesen H, editors. Corrosion of metallic heritage artefacts: investigation, conservation and prediction for long-term behaviour. European Federation of Corrosion Publication 48. Cambridge: Woodhead Publishing; 2007. p. 203–18.
Chapter
Google Scholar
Nord AG, Mattsson E, Tronner K. Factors influencing the long-term corrosion of bronze artefacts in soil. Protect Met. 2005;41:309–16.
Article
Google Scholar
Nord AG, Tronner K, Mattsson E, Borg GC, Ullén I. Environmental threats to buried archaeological remains. Ambio. 2005;34:256–62.
Article
Google Scholar
Gerwin W, Baumhauer R. Effect of soil parameters on the corrosion of archaeological metal finds. Geoderma. 2000;96:63–80.
Article
Google Scholar
Oudbashi O. Evaluation of corrosion morphology and conservation conditions in excavated bronze collections based on metal-environment-corrosion system. PhD Thesis. Art University of Isfahan, Unpublished (in Farsi); 2013.
Mofidi-Nasrabadi B. Vorbericht der archäologischen Ausgrabungen der Kampagnen 2012–2013 in Haft Tappeh (Iran). Elamica. 2014;4:67–167.
Google Scholar
Theocharopoulos SP, Mitsios IK, Arvanitoyannis I. Traceabilty of environmental soil measurements. Trends Anal Chem. 2004;23:237–51.
Article
Google Scholar
Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods. Berlin: Springer; 2006.
Book
Google Scholar
Gunicheva T. Application of nondestructive X-ray fluorescence method (XRF) in soils, friable and marine sediments and ecological materials. In: Panagiotaras D, editor. Geochemistry—earth’s system processes. Rijeka: InTech; 2012. p. 372–88.
Google Scholar
Goldberg P, Macphail RI. Practical and theoretical geoarchaeology. Oxford: Blackwell Publishing; 2006.
Google Scholar
Shrivastava VS. X-ray diffraction and mineralogical study of soil: a review. J Appl Chem Res. 2009;9:41–51.
Google Scholar
Mitchell JK, Soga K. Fundamentals of soil behavior. 3rd ed. New York: Wiley; 2005.
Google Scholar
ASTM D422-63. Standard test method for particle-size analysis of soils. West Conshohocken: ASTM International; 2002. https://doi.org/10.1520/d0422-63r02.
ASTM D2974-00. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. West Conshohocken: ASTM International; 2000. https://doi.org/10.1520/d2974-00.
Howard PJA, Howard DM. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol Fertil Soils. 1990;9:306–10.
Article
Google Scholar
Storer DA. A simple high sample volume ashing procedure for determining soil organic matter. Commun Soil Sci Plant Anal. 1984;15:759–72.
Article
Google Scholar
Schulte EE., Hoskins B. Recommended soil organic matter tests. In: Recommended soil testing procedures for the Northeastern United States. Northeastern Regional Publication No. 493, 3rd ed. 2011.
Konare H, Yost RS, Doumbia M, McCarty GW, Jarju A, Kablan R. Loss on ignition: measuring soil organic carbon in soils of the Sahel, West Africa. Afr J Agri Res. 2010;5:3088–95.
Google Scholar
ASTM D4972-01. Standard test method for pH of soils. West Conshohocken: ASTM International; 2007. https://doi.org/10.1520/d4972-01r07.
Shirokova Y, Forkutsa I, Sharafutdinova N. Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drainage Syst. 2000;14:199–205.
Article
Google Scholar
Miller JJ, Curtin D. Electrical conductivity and soluble ions. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. 2nd ed. Abingdon: Taylor & Francis; 2008.
Google Scholar
Sparks DL. Environmental soil chemistry. 2nd ed. London: Academic Press; 2003.
Google Scholar
Odegaard N, Carroll S, Zimmet WS. Material characterization tests for objects of art and archaeology. 2nd ed. London: Archetype Publications; 2005.
Google Scholar
ASTM D1411-09. Standard test methods for water-soluble chlorides present as admixtures in graded aggregate road mixes. West Conshohocken: ASTM International; 2009. https://doi.org/10.1520/d1411-09.
ASTM D1067-06. Standard test methods for acidity or alkalinity of water. West Conshohocken: ASTM International; 2006. https://doi.org/10.1520/d1067-06.
Marko-Varga G, Csiky I, Joensson JA. On-chromatographic determination of nitrate and sulfate in natural waters containing humic substances. Anal Chem. 1984;56:2066–9.
Article
Google Scholar
Oudbashi O, Hasanpour A, Davami P. Investigation on corrosion stratigraphy and morphology in some iron age bronze alloys vessels by OM, XRD and SEM–EDS methods. Appl Phys A. 2016;122:262.
Article
Google Scholar
Oudbashi O. Multianalytical study of corrosion layers in some archaeological copper alloy artefacts. Surf Interface Anal. 2015;47:1133–47.
Article
Google Scholar
Scott DA. Bronze disease: a review of some chemical problems and the role of relative humidity. JAIC. 1990;29:193–206.
Google Scholar
Alvarez-Mon J. Aspects of elamite wall painting: new evidence from Kabnak (Haft Tappeh). Iranica Antiqua. 2005;40:149–64.
Article
Google Scholar
Mofidi Nasrabadi B. Arbeitszimmer eines Schreibers aus der mittelelamischen Zeit. In: Wilhelm G, editors. Organisation, representation, and symbols of power in the ancient near east. Proceedings of the 54th rencontre Assyriologique Internationale at Würzburg. 20–25 July 2008. Indiana: Winona Lake; 2012. p 747–56.
Mofidi Nasrabadi B. Elam: Archaeology and history. In: Stöllner T, Slotta R, Vatandoust A, editors. Persiens Antike Pracht, Bergbau Handwerk Archäologie, exhibition catalogue. Bochum: Deutsches Bergbau-Museum; 2004. p. 294–309.
Google Scholar
Oudbashi O, Emami SM, Malekzadeh M, Hassanpour A, Davami P. Archaeometallurgical studies on the bronze vessels from “Sangtarashan”, Luristan, W-Iran. Iranica Antiqua. 2013;48:147–74.
Google Scholar
Color Munsell. Munsell soil color charts. Grand Rapids: GretagMacbeth LLC; 2000.
Google Scholar
Johnston-Feller R. Color science in the examination of museum objects. Nondestructive procedures. Los Angeles: Getty Conservation Institute; 2001.
Google Scholar
Gerharz RR, Lantermann R, Spennemann DR. Munsell color charts: a necessity for archaeologists? Aust Hist Archaeol. 1988;6:88–95.
Google Scholar
ASTM D2487-11. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). West Conshohocken: ASTM International; 2011.
Soil Survey Division Staff. Soil survey manual. Soil conservation service. US Department of Agriculture Handbook 18; 1993.
Veleva L. Soils. In: Baboian R, editor. Corrosion tests and standards: application and interpretation. 2nd ed. West Conshohocken: ASTM International; 2005.
Google Scholar
Chesworth W, Arbestain MC, Macías F. Calcareous soils. In: Chesworth W, editor. Encyclopedia of soil science, part of the series encyclopedia of earth sciences series. Netherlands: Springer; 2008. p. 77–9.
Google Scholar
Vuai SA, Nakamura K, Tokuyama A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan. Geochem J. 2003;37:579–92.
Article
Google Scholar
Robarge WP. Acidity. In: Chesworth W, editor. Encyclopedia of soil science, part of the series encyclopedia of earth sciences series. Netherlands: Springer; 2008. p. 10–20.
Google Scholar
Barber SA. Soil nutrient bioavailability: a mechanistic approach. 2nd ed. New York: Wiley; 1995.
Google Scholar
Yahaya N, Lim KS, Noor NM, Othman SR, Abdullah A. Effects of clay and moisture content on soil-corrosion dynamic. Malaysia J Civil Eng. 2011;23:24–32.
Google Scholar
Wagner D, Dakoronia F, Ferguson C, Fischer WR, Hills C, Kars H, Meijers R. “Soil Archive” classification in terms of impacts of conservability of archaeological heritage. In: MacLeod ID, Pennec SL, Robbiola L, editors. Metal 95, Proceedings of the international conference on metals conservation. Semur en Auxois, 25–28 Sept. 1995. London: James & James. 1997. p 21–6.
AWWA Staff. Ductile-Iron Pipe and Fittings. 3rd ed. M41 AWWA Manual. American Water Works Association; 2011.
Corrosion Survey and Standardization of Korea. n.d. Soil corrosivity analysis. http://www.corrosionsurvey.co.kr/viewer/pdf/n_02.pdf. Accessed 20 Feb 2012.
Samtani NC, Nowatzki EA, Hollow bar soil nails—review of corrosion factors and mitigation practice. Publication No. FHWA-CFL/TD-10-002, Central Federal Lands Highway Division; 2010. http://www.cflhd.gov/programs/techDevelopment/geotech/corrosion/01_HBSN_Corrosion_Factors_Mitigation.pdf. Accessed 15 Dec 2012.
Fernandes R. Study on roman and merovingian copper alloyed artefacts. In: Soil corrosion processes and recycling practices. M.Sc. Thesis. (O-variant). Vrije Universiteit Amsterdam; 2009.
AlHazzaa MI. A comparative study of soil corrosivity of the university compass. Final Research Report No.45/426. Research Center of College of Engineering. King Saud University; 2007.
Durr CL, Beavers JA. Techniques for assessment of soil corrosivity. In: Corrosion 98, 22–27 March 1998. San Diego: NACE International; 1998.
Liu Z, Sadiq R, Rajani B, Najjaran H. Exploring the relationship between soil properties and deterioration of metallic pipes using predictive data mining methods. J Comput Civil Eng. 2010;24:289–301.
Article
Google Scholar
Bogemans F, Janssens R, Baeteman C. Depositional evolution of the Lower Khuzestan plain (SW Iran) since the end of the Late Pleistocene. Quatern Sci Rev. 2017;171:154–65.
Article
Google Scholar
Martens WN, Frost RL, Kloprogge JT, Williams PA. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and ‘bronze disease’. J Raman Spectrosc. 2003;34:145–51.
Article
Google Scholar
Fitzgerald KP, Nairn J, Skennerton G, Atrens A. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corros Sci. 2006;48:2480–509.
Article
Google Scholar
Krapchev TA. Literary survey on corrosion and corrosion products of copper and bronze observed in ancient artifacts. B.Sc. Thesis. Massachuset Institute of Technology; 1976.
Lins A, Power T. The corrosion of bronze monuments in polluted urban sites: a report on the stability of copper mineral species at different pH levels. In: Scott DA, Podany J, Considine BB, editors. Ancient and historic metals: conservation and scientific research. Los Angeles: Getty Conservation Institute; 1994. p. 119–51.
Google Scholar
Balasubramaniam R, Mungole MN, Prabhakar VN. Studies on ancient Indian OCP period copper. Indian J Hist Sci. 2002;37:1–15.
Google Scholar
Schweizer F. Bronze objects from lake sites: from patina to “Biography”. In: Scott DA, Podany J, Considine BB, editors. Ancient and historic metals: conservation and scientific research. Los Angeles: Getty Conservation Institute; 1994. p. 33–50.
Google Scholar
Mattsson E, Nord AG, Tronner K, Fjaestad M, Lagerlöf A, Ullén I, Borg GC. Deterioration of archaeological material in soil, Results on bronze artefacts. Konserveringstekniska Studier RIK. Riksantikvariëambetet och Statens Historiska Museer 10. Stockholm: Riksantikvarieämbetet Förlag; 1996.
Google Scholar
Tronner K, Nord AG, Borg GC. Corrosion of archaeological bronze artefacts in acidic soil. Water Air Soil Pollut. 1995;85:2725–30.
Article
Google Scholar
Marani D, Patterson JW, Anderson PR. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 1995;29:1317–26.
Article
Google Scholar
Strandberg H. Reactions of copper patina compounds-II. Influence of sodium chloride in the presence of some air pollutants. Atmos Environ. 1998;32:3521–6.
Article
Google Scholar
Strandberg H. Reactions of copper patina compounds-I. Influence of some air pollutants. Atmos Environ. 1998;32:3511–20.
Article
Google Scholar