Bentsen SE. Controlling the heat: an experimental approach to Middle Stone Age pyrotechnology. S Afr Archaeol Bull. 2013;68:137–45.
Google Scholar
Brown K, Marean CW, Herries AIR, Jacobs Z, Tribolo C, Braun D, et al. Fire as an engineering tool of early modern humans. Science. 2009;325:859–62.
Article
CAS
Google Scholar
Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE. Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci. 2013;40:3519–31.
Article
CAS
Google Scholar
Wadley L, Prinsloo LC. Experimental heat treatment implies analogical reasoning in the Middle Stone Age. J Hum Evol. 2014;70:49–60.
Article
Google Scholar
Wadley L, de la Peña P, Prinsloo LC. Responses of South African agate and chalcedony when heated experimentally, and the broader implications for heated archaeological minerals. J Field Archaeol. 2017;42:364–77. https://doi.org/10.1080/00934690.2017.1337438.
Article
Google Scholar
Schmidt P, Porraz G, Bellot-Gurlet L, February E, Ligouis B, Paris C, et al. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J Hum Evol. 2015;85:22–34. https://doi.org/10.1016/j.jhevol.2015.05.001.
Article
Google Scholar
Delagnes A, Schmidt P, Douze K, Wurz S, Bellot-Gurlet L, Conard NJ, et al. Early evidence for the extensive heat treatment of silcrete in the Howiesons Poort at Klipdrift Shelter (Layer PBD, 65 ka), South Africa. PLoS ONE. 2016;11(10):e0163874. https://doi.org/10.1371/journal.pone.0163874.
Article
CAS
Google Scholar
Mallol C, Hernández CM, Cabanes D, Sistiaga A, Machado J, Rodríguez T, et al. The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications. J Archaeol Sci. 2013;40:2515–37.
Article
Google Scholar
Wadley L, Lombard M. Small things in perspective: the contribution of our blind tests to micro-residue studies on archaeological stone tools. J Archaeol Sci. 2007;34:1001–10.
Article
Google Scholar
Goldberg P, Miller CE, Schiegl S, Ligouis B, Berna F, Conard NJ, et al. Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeol Anthropol Sci. 2009;1(2):95–122.
Article
Google Scholar
Sievers C. Experimental sedge bedding and the taphonomic implications for Sibudu Cave, KwaZulu-Natal. S Afr Archaeol Bull. 2013;68:200–10.
Google Scholar
Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller CE. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science. 2011;334:1388–91.
Article
CAS
Google Scholar
Lennox S, Bamford M. Identifying Asteraceae, particularly Tarchonanthus parvicapitulatus, in archaeological charcoal from the Middle Stone Age. Quat Int. 2017;457:155–71.
Article
Google Scholar
Bordes L, Prinsloo LC, Fullagar R, Sutikna T, Hayes E, Jatmiko, et al. Viability of Raman microscopy to identify micro-residues related to tool-use and modern contaminants on prehistoric stone artefacts. J Raman Spectrosc. 2017;48:1212–21. https://doi.org/10.1002/jrs.5202.
Article
CAS
Google Scholar
Prinsloo LC, Bordes L. Raman microscopy as a primary technique for identifying microresidues related to tool-use on prehistoric stone artefacts. In: Vandenabeele P, Edwards H, editors. Raman spectroscopy in archaeology and art history, vol. 2. Cambridge: The Royal Society of Chemistry; 2019. p. 81–96.
Google Scholar
Monnier GF, Frahm E, Luo B, Missal K. Developing FTIR microspectroscopy for analysis of plant residues on stone tools. J Archaeol Sci. 2017;78:158–78.
Article
CAS
Google Scholar
Monnier G, Frahm E, Luo B, Missal K. Developing FTIR microspectroscopy for the analysis of animal-tissue residues on stone tools. J Archaeol Method Theory. 2018. https://doi.org/10.1007/s10816-017-9325-3.
Article
Google Scholar
Prinsloo LC, Wadley L, Lombard M. Infrared reflectance spectroscopy as an analytical technique for the study of residues on stone tools: potential and challenges. J Archaeol Sci. 2014;41:732–9.
Article
CAS
Google Scholar
Charrié-Duhaut A, Porraz G, Cartwright CR, Igreja M, Connan J, Poggenpoel C, et al. First molecular identification of a hafting adhesive in the late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, South Africa). J Archaeol Sci. 2013;40:3506–18.
Article
Google Scholar
d’Errico F, Backwell LR, Villa P, Degano I, Lucejko J, Bamford M, et al. Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proc Nat Acad Sci USA. 2012;109:13214–9.
Article
Google Scholar
Luong S, Hayes E, Flannery E, Sutikna T, Tocheri MW, Saptomo EW, et al. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Anal Methods. 2017;9:4349–62.
Article
CAS
Google Scholar
Luong S, Tocheri MW, Sutikna T, Saptomo EW, Jatmiko, Roberts RG. Incorporating terpenes, monoterpenoids and alkanes into multiresidue organic biomarker analysis of archaeological stone artefacts from Liang Bua (Flores, Indonesia). J Archaeol Sci Rep. 2018;19:189–99.
Google Scholar
Mathe C, Archier P, Nehme L, Vieillescazes C. The study of Nabataean organic residues from Madâ’in Sâlih, ancient Hegra, by gas chromatography–mass spectrometry. Archaeometry. 2008. https://doi.org/10.1111/j.1475-4754.2008.00417.
Article
Google Scholar
Regert M. Investigating the history of prehistoric glues by gas chromatography–mass spectrometry. J Sep Sci. 2004;27:244–54. https://doi.org/10.1002/jssc.200301608.
Article
CAS
Google Scholar
Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922;30:377–92.
Article
Google Scholar
Lennox S, Bamford M, Wadley L. Middle Stone Age wood use 58 000 years ago in KwaZulu-Natal: charcoal analysis from two Sibudu occupation layers. South Afr Humanit. 2017;30:247–86.
Google Scholar
Balogun AO, Sotoudehniakaranib F, McDonald AG. Thermo-kinetic, spectroscopic study of brewer’s spent grains and characterisation of their pyrolysis products. J Anal Appl Pyrolysis. 2017;127:8–16.
Article
CAS
Google Scholar
El-Hendawy AA. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J Anal Appl Pyrolysis. 2006;75:159–66.
Article
CAS
Google Scholar
Mamede AP, Gonçalves D, Marques MPM, Batista de Carvalho LAE. Burned bones tell their own stories: a review of methodological approaches to assess heat-induced diagenesis. Appl Spectrosc Rev. 2018;53:603–35.
Article
Google Scholar
Aldeias V, Dibble HL, Sandgathe D, Goldberg P, McPherron SJP. How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. J Archaeol Sci. 2016;67:64–79.
Article
Google Scholar
Canti MG, Linford NT. The effects of fire on archaeological soils and sediments: temperature and colour relationships. Proc Prehist Soc. 2000;66:385–95.
Article
Google Scholar
DeBano LF. The effect of fire on soil properties. In: Paper presented at the symposium on management and productivity of Western-Montane Forest Soils, Boise, ID, April 10–12; 1990.
Miller CE, Sievers C. An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa. J Archaeol Sci. 2012;39:3039–51. https://doi.org/10.1016/j.jas.2012.02.007.
Article
Google Scholar
Sievers C, Wadley L. Going underground: experimental carbonization of fruiting structures under hearths. J Archaeol Sci. 2008;35:2909–17.
Article
Google Scholar
Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O. Differential burning, recrystallisation, and fragmentation of archaeological bone. J Archaeol Sci. 1995;22:223–7.
Article
Google Scholar
Frandsen WH, Ryan KC. Soil moisture reduces below ground heat flux and soil temperatures under a burning fuel pile. Can J For Res. 1986;16:244–8.
Article
Google Scholar
March RJ, Lucquin A, Joly D, Ferreri JC, Muhieddine M. Processes of formation and alteration of archaeological fire structures: complexity viewed in the light of experimental approaches. J Archaeol Method Theory. 2014;21:1–45.
Article
Google Scholar
Aldeias V. Experimental approaches to archaeological fire features and their behavioral relevance. Curr Anthropol. 2017;58(Supplement 16):191–205.
Article
Google Scholar
Clark JL, Ligouis B. Burned bone in the Howieson’s Poort and post-Howieson’s Poort Middle Stone Age deposits at Sibudu (South Africa): behavioral and taphonomic implications. J Archaeol Sci. 2010;37:2650–61.
Article
Google Scholar
Braadbaart F, Poole I, Huisman HDJ, van Os B. Fuel, fire and heat: an experimental approach to highlight the potential of studying ash and char remains from archaeological contexts. J Archaeol Sci. 2012;39:836–47.
Article
Google Scholar
Cnuts D, Tomasso S, Rots V. The role of fire in the life of an adhesive. J Archaeol Method Theory. 2017;25:839–62. https://doi.org/10.1007/s10816-017-9361-z.
Article
Google Scholar