Bueno-Ramírez P, de Balbín-Behrmann R, Barroso-Bermejo R, Laporte L, Gouezin P, Cousseau F, et al. From pigment to symbol: the role of paintings in the ideological construction of European megaliths. In: Müller J, Hinz M, Wunderlich M, editors., et al., Megaliths–societies–landscapes. Early monumentality and social differentiation in neolithic Europe. Bonn: Dr. Rudolf Habelt GmbH PP; 2019. p. 845–64.
Google Scholar
Schulz PB. Radiocarbon dates and Bayesian modeling support maritime diffusion model for megaliths in Europe. Proc Natl Acad Sci USA. 2019;116:3460–5.
Article
CAS
Google Scholar
Finlayson B, Dennis S. Landscape, archaeology and heritage. Levant. 2002;34:219–27.
Article
Google Scholar
Krzemińska AE, Dzikowska A, Zarȩba AD, Jarosz KR, Widawski K, Lach JS. The significance of megalithic monuments in the process of place identity creation and in tourism development. Open Geosci De Gruyter. 2018;10:504–16.
Article
Google Scholar
Beck J, Chrisomalis S. Landscape archaeology, paganism, and the interpretation of megaliths. Pomegranate Int J Pagan Stud. 2009;10(2):142–62.
Google Scholar
Graham BJ. Heritage conservation and revisionist and nationalism in Ireland. Building a new heritage: tourism, culture and identity in the new Europe. Milton Park: Routledge; 1994. p. 133–58.
Google Scholar
Grigoryev AA, Larchenko LV, Paranina AN, Bogdanov NA. Prehistoric stone objects of cultural heritage as a resource for the development of tourism in the Russian Arctic. IOP Conf Ser Earth Environ Sci. 2020;539(1):012093.
Article
Google Scholar
Robb J. Hegemonic megaliths: changing the Irish prehistoric. Ir Stud Rev. 1999;7:5–11.
Article
Google Scholar
Schierhold K. Westphalian megaliths go touristic: archaeological research as a base for the development of tourism. Feasible management of archaeological heritage sites open to tourism. Cham: Springer; 2018. p. 141–9.
Google Scholar
Ross D, Saxena G. Participative co-creation of archaeological heritage: case insights on creative tourism in Alentejo, Portugal. Ann Tour Res. 2019. https://doi.org/10.1016/j.annals.2019.102790.
Article
Google Scholar
Benlloch PO, López-Romero E, Daire M-Y. Coastal erosion and public archaeology in Brittany, France. In: López-Romero E, Daire M-Y, Dawson T, Nimura C, editors. Public archaeology and climate change. 1st ed. Oxford: Oxbow Books; 2017. p. 81–9.
Chapter
Google Scholar
López-Romero E, Vázquez XIV, Mañana-Borrazás P, Güimil-Fariña A. Recovering information from eroding and destroyed coastal archaeological sites: public archaeology and climate change. Oxford: Oxbow books; 2017. p. 72–80.
Google Scholar
Grøntoft T, Cassar JA. An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta. Environ Earth Sci. 2020;79:1–16.
Article
CAS
Google Scholar
Smith M, Speiran S, Graham P. Megaliths, material engagement, and the atmospherics of neo-lithic ethics: presage for the end(s) of tourism. J Sustain Tour. 2021;2–3:337–52.
Article
Google Scholar
Dawson T, Hambly J, Kelley A, Lees W, Miller S. Coastal heritage, global climate change, public engagement, and citizen science. PNAS. 2020;117(15):8280–6.
Article
CAS
Google Scholar
Fatorić S, Seekamp E. Knowledge co-production in climate adaptation planning of archaeological sites. J Coast Conserv. 2019;23:689–98.
Article
Google Scholar
Lecari N, Shulze J, Wendrich W, Porter B, Burton M, Levy TE. 3-D digital preservation of at-risk global cultural heritage. In: Catalano CE, De Luca L, editors. Eurographics workshop on graphics and cultural heritage. Merced: UC Merced; 2016.
Google Scholar
Savage SH, Johnson A, Levy TE. TerraWatchers, crowdsourcing, and at-risk world heritage in the Middle East. In: Vincent M, López-Menchero Bendicho V, Ioannides M, Levy T, editors. Heritage and archaeology in the digital age. Cham: Springer; 2016. p. 67–77.
Google Scholar
López RE, Mañana-Borrazás P, Güimil-Fariña A, Daire MY. Archaeology and coastal erosion: monitoring change through 3D digital techniques. In: Kamermans H, de Neef E, Piccoli C, Posluschny AG, Scopigno R, editors. The three dimensions of archaeology. Proceedings of the XVII UISPP World Congress (1–7 September, Burgos, Spain). Volume 7/Sessions A4b and A12. Oxford: Archaeopress; 2016. p. 90–7.
Google Scholar
Reeder LA, Rick TC, Landson JM. Our disappearing past: a GIS analysis of the vulnerability of coastal archaeological resources in California’s Santa Barbara Channel region. J Coast Conserv. 2012;16:187–97.
Article
Google Scholar
Benavides López JA, Aranda Jiménez G, Sánchez Romero M, Alarcón García E, Fernández Martín S, Lozano Medina A, Esquivel Guerrero JA. 3D modelling in archaeology: the application of structure from motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain). J Archaeo Sci: Rep. 2016;10:495–506.
Google Scholar
Benavides López JA, Esquivel Sánchez JF, Esquivel Guerrero JA. Nuevas aportaciones al estudio métrico y geométrico del dolmen de Viera (Antequera, Andalucía). Menga Rev Prehist Andal. 2015;76:201–8.
Google Scholar
Cassen S, Lescop L, Grimaud V. Pour une critique de la représentation tridimensionelle des architectures mégalithiques en Europe occidentale méthodes et usages actuelles. Ann Bretag Pays l’Ouest. 2013;120(1):7–35.
Article
Google Scholar
Moyano J, Odriozola CP, Nieto-Julián JE, Vargas JM, Barrera JA, León J. Bringing BIM to archaeological heritage: interdisciplinary method/strategy and accuracy applied to a megalithic monument of the Copper Age. J Cult Herit. 2020;45:303–14.
Article
Google Scholar
González-García AC, Vilas-Estévez B, López-Romero E, Mañana-Borrazás P. Domesticating light and shadows in the neolithic: the dombate passage grave (A Coruña, Spain). Cambr Archaeo J. 2019;29(2):327–43.
Article
Google Scholar
Cortón Noya N, López García A, Carrera RF. Combining photogrammetry and photographic enhancement techniques for the recording of megalithic art in north-west Iberia. Digit Appl Archaeo Cult Herit. 2015;2:89–101.
Google Scholar
Cerrillo-Cuenca E, Bueno-Ramírez P, de Balbín-Behrmann R. “3DMeshTracings”: a protocol for the digital recording of prehistoric art. Its application at Almendres cromlech (Évora, Portugal). J Archaeol Sci Rep. 2019;25:171–83.
Google Scholar
Cassen S, Robin G. Recording art on neolithic stelae and passage tombs from digital photographs. J Archaeol Method Theory. 2010;17:1–14.
Article
Google Scholar
Cassen S, Lescop L, Grimaud V, Robin G. Complementarity of acquisition techniques for the documentation of Neolithic engravings: lasergrammetric and photographic recording in Gavrinis passage tomb (Brittany, France). J Archaeol Sci. 2014;45:126–40.
Article
Google Scholar
Williams K, Twohig ES. From sketchbook to structure from motion: recording prehistoric carvings in Ireland. Digit Appl Archaeo Cult Herit. 2015;2:120–31.
Google Scholar
Bueno-Ramírez P, Barroso-Bermejo R, de Balbín-Behrmann R. Between east and west: megaliths in the centre of the Iberian Peninsula. In: Laporte L, Scarre C, editors. Megal Archit Eur. Oxford: Oxbow Books; 2016. p. 157.
Google Scholar
Bueno-Ramírez P, Barroso-Bermejo R, de Balbín-Behrmann R. El dolmen de Azután (Toledo): áreas de habitación y áreas funerarias en la cuenca interior del Tajo. Alcalá: Univ; 2005.
Google Scholar
Cerrillo CE. Una biografía de la necrópolis megalítica del área de Alconétar. Ataecina 10. Mérida: Instituto de Arqueología. Mérida: Consorcio de la ciudad Monumental de Mérida; 2018.
Google Scholar
Leisner G, Leisner V. El Guadalperal. Madr Mitt. 1960;1:20–73.
Google Scholar
Bronk RC, Heaton T, Blaauw M, Blackwell P, Reimer P, Reimer R, et al. Statistical approaches and tools for IntCal20. Glasgow: EGU General Assembly Conference Abstract; 2020. p. 9336.
Google Scholar
Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. 2020;62:725–57.
Article
CAS
Google Scholar
Oliveira J. Monumentos megalíticos da bacia hidrográfica do rio server. Lisboa: Colibri; 1998.
Google Scholar
Señorán MJM. Landscapes on the move. Digitally exploring the relationship between megaliths and mobility in Northern Cáceres (Spain). In: Mayoral Herrera V, Parcero-Oubiña C, Fábrega-Álvarez P, editors. Archaeol geomatics harvest benefits 10 years train Iberian peninsula. Leiden: Sidestone Press; 2018. p. 107–20.
Google Scholar
Ruiz-Gálvez Priego ML. El conjunto dolménico de la Dehesa Boyal de Montehermoso. Extrem Arqueol. 2000;8:187–208.
Google Scholar
Bueno-Ramírez P, Barroso-Bermejo R, de Balbín-Behrmann R, González Martín A, Cambra-Moo O, García Gil O, et al. Pasados releídos: el dolmen del Portillo de las Cortes, Guadalajara/MAN. Boletín Mus Arqueol Nac. 2016;31:9–28.
Google Scholar
Bueno-Ramírez P, Barroso-Bermejo R, de Balbín-Behrmann R. Construcciones megalíticas avanzadas de la cuenca interior del Tajo: el núcleo cacereño. SPAL. 2004. https://doi.org/10.12795/spal.2004.i13.03.
Article
Google Scholar
Cerrillo-Cuenca E, Bueno-Ramírez P. Counting with the invisible record? The role of LiDAR in the interpretation of megalithic landscapes in south-western Iberia (Extremadura, Alentejo and Beira Baixa). Archaeol Prospect. 2019;26:251–64.
Article
Google Scholar
Bueno-Ramírez P, de Balbín BR, Barroso-Bermejo R, Alcolea González JJ, Villa R, Moraleda A. El dolmen de Navalcán. El poblamiento megalítico en el Guadyerbas. Toledo: Instituto Provincial de Investigaciones y Estudios Toledanos. Diputación de Toledo; 1999.
Google Scholar
Bueno-Ramírez P, de Balbín BR. La graphie du serpent dans la culture mégalithique péninsulaire. Représentation de plein air et représentations dolméniques. L’Anthropologie. 1995;99:357–81.
Google Scholar
Cerrillo Cuenca E, Liceras Garrido R, Prada GA. Tiempo y paisaje en la necrópolis megalítica de Guadancil (Cáceres). In: Rocha L, Bueno-Ramírez P, Branco G, editors. Death as archaeology of transition: thoughts and materials papers from the II International Conference of Transition Archaeology: death as archaeology of transition, 2013 (BAR International Series 2708). Oxford: Archaeopress; 2016. p. 71–81.
Google Scholar
Moure RJA. Hugo Obermaier la institucionalización de las investigaciones y la integración de los estudios de prehistoria en la Universidad española. In: El hombre fosil 80 años después. Vol Conmem del 50 aniversario la muerte Hugo Obermaier. Oviedo: University of Oviedo; 1996. p. 17–50.
Google Scholar
Almagro GM. Hugo Obermaier y la prehistoria en España. In: Marzoli D, Maier J, Schattner TG, editors. Hist del inst arqueol alemán madrid faszikel 1 antecedentes y form del dep Madrid. Madrid: DAI; 2014. p. 167–86.
Google Scholar
Obermaier H. El Dolmen de matarrubilla (Sevilla). Spain: Junta para Ampliación de Estudios e Investigaciones Científicas; 1919.
Google Scholar
Obermaier H. Die Dolmen Spaniens. Im selbstverlage der anthropologischen gesellschaft. Munster: University of Munster; 1920.
Google Scholar
de Balbín-Behrmann R, Bueno-Ramírez P. Soto, un ejemplo de arte megalítico al Suroeste de la Península. In: El hombre fosil 80 años después. Vol conmem del 50 aniversario la muerte Hugo Obermaier. Oviedo: University of Oviedo; 1996. p. 467–503.
Google Scholar
Bueno-Ramírez P, de Balbín-Behrmann R. L’art mégalithique dans la Péninsule Ibérique: une vue d’ensemble. L’ Anthropol. 1992;16:499–571.
Google Scholar
Brendel B. Dam construction in Francoist Spain in the 1950s and 1960s: negotiating the future and the past. Sustain Dev. 2020;28:396–404.
Article
Google Scholar
Swyngedouw E. Technonatural revolutions: the scalar politics of Franco’s hydro-social dream for Spain, 1939–1975. Trans Inst Br Geogr. 2007;32:9–28.
Article
Google Scholar
Coder PM, Moliner BC. La situación del patrimonio arqueológico subacuático en la cuenca extremeña del Tajo. Perspectivas de conservación, documentación y análisis. Arqueol Subacuát Esp Actas Congr Arqueol Naútica Subacuát Esp. 2013;2014(34):67–80.
Google Scholar
Querol MA. Manual de gestión del patrimonio cultural. Madrid: Akal textos; 2010.
Google Scholar
Fernández MS, Cortés JP, Gómez JN. Análisis geométrico para evaluación structural. TLS vs photogrametría terrestre: aplicación a puente de fábrica (EX-100PK-8). Rehabend 2016 Euro-American Congress. Construction pathology, rehabilitation technology and heritage management. Mexico: Instituto Tecnológico de la Construcción; 2016. p. 736–45.
Google Scholar
Fryskowska A, Walczykowski P, Delis P, Wojtkowska M. ALS and TLS data fusion in cultural heritage documentation and modeling. Int Arch Photogramm Remote Sens Spat Inf Sci. 2015;40:147.
Article
Google Scholar
Kushwaha SKP, Dayal KR, Raghavendra S, Pande H, Tiwari PS, Agrawal S, et al. 3D digital documentation of a cultural heritage site using terrestrial laser scanner—a case study. Appl Geomatics Civ Eng. 2020. https://doi.org/10.1007/978-981-13-7067-0_3.
Article
Google Scholar
Monego M, Menin A, Fabris M, Achilli V. 3D survey of Sarno Baths (Pompeii) by integrated geomatic methodologies. J Cult Herit. 2019;40:240–6.
Article
Google Scholar
Faro Focus. Faro Focus 3D X330. Lake Mary: Faro Technologies; 2017.
Google Scholar
Faro SCENE. Faro. Lake Mary: Faro Technologies; 2019.
Google Scholar
Sánchez-Fernández M, Chorro FJ, Marín M-J, de Sanjosé-Blasco JJ, Martínez LF. Gestión de los datos en proyectos “Scan to HBIM.” Logroño: INGEGRAF; 2019.
Book
Google Scholar
Agudo PU, Pajas JA, Pérez-Cabello F, Redón JV, Lebrón BE. The potential of drones and sensors to enhance detection of archaeological cropmarks: a comparative study between multi-spectral and thermal imagery. Drones. 2018;2:1–23.
Article
Google Scholar
Luo L, Wang X, Guo H, Lasaponara R, Zong X, Masini N, et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017). Remote Sens Environ. 2019;232:111280.
Article
Google Scholar
Pérez-Alvárez JA, Gonçalves GR, Cerrillo-Cuenca E. A protocol for mapping archaeological sites through aerial 4k videos. Digit Appl Archaeol Cult Herit. 2019;13:e00101.
Google Scholar
Waagen J. New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry. J Archaeol Sci. 2019;101:11–20.
Article
Google Scholar
Monna F, Magail J, Rolland T, Navarro N, Wilczek J, Gantulga JO, et al. Machine learning for rapid mapping of archaeological structures made of dry stones—example of burial monuments from the Khirgisuur culture, Mongolia. J Cult Herit. 2020;43:118–28.
Article
Google Scholar
Martínez-del-Pozo JÁ, Cerrillo-Cuenca E, Salas-Tovar E. Low altitude aerial photography applications for digital surface models creation in archaeology. Trans GIS. 2013;17(2):227–46.
Article
Google Scholar
Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens. 2014. https://doi.org/10.1016/j.isprsjprs.2014.02.013.
Article
Google Scholar
Kardasz P, Doskocz J. Drones and possibilities of their using. J Civ Environ Eng. 2016;6(3):1–7.
Google Scholar
Campana S. Drones in archaeology state-of-the-art and future perspectives. Archaeol Prospect. 2017;24:275–96.
Article
Google Scholar
Bueno-Ramírez P, de Balbín-Behrmann R. Arte megalítico en la Extremadura española. Extrem Arqueol. 2000;8:345–80.
Google Scholar
CREAFORM. GoSCAN50. Creaform: Levis; 2017.
Google Scholar
Koutsoudis A, Vidmar B, Ioannakis G, Arnaoutoglou F, Pavlidis G, Chamzas C. Multi-image 3D reconstruction data evaluation. J Cult Herit. 2014;15:73–9.
Article
Google Scholar
Fernández-Hernandez J, González-Aguilera D, Rodríguez-Gonzálvez P, Mancera-Taboada J. Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective. Low Cost Tool Archaeol Appl Archaeom. 2015;57(1):128–45.
Google Scholar
Gonçalves JA, Henriques R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J Photogramm Remote Sens. 2015;104:101–11.
Article
Google Scholar
Andersen NH. Causeway enclosures and megalithic monuments as media for shaping neolithic identities. In: Furholt M, Lüth F, Müller J, editors. Megaliths and identities. Boon: Habelt; 2011. p. 143–54.
Google Scholar
Kyriakaki G, Doulamis A, Doulamis N, Ioannides M, Makantasis K, Protopapadakis E, et al. 4D reconstruction of tangible cultural heritage objects from web-retrieved images. Int J Herit Digit Era. 2014;3:431–51.
Article
Google Scholar
Smith MW, Carrivick JL, Quincey DJ. Structure from motion photogrammetry in physical geography. Prog Phys Geogr. 2014;38:97–116.
Article
Google Scholar
Mayer C, Pereira LG, Kersten TP. A comprehensive workflow to process UAV images for the efficient production of accurate geo-information. IX Natl Conf Cartogr Geod. 2018. https://doi.org/10.1201/b22212-21.
Article
Google Scholar
Phantom 4 PRO/PRO+. User manual v1.0. DJI: Nanshan; 2016.
Google Scholar
Schonberger JL, Frahm J-M. Structure-from-motion revisited. 2016 IEEE Conf Comput Vis Pattern Recognit. 2016. https://doi.org/10.1109/ACCESS.2018.2879337.
Article
Google Scholar
Schönberger JL, Zheng E, Frahm JM, Pollefeys M. Pixelwise view selection for unstructured multi-view stereo. Lect Notes Comput Sci. 2016. https://doi.org/10.1007/978-3-319-46487-9_31.
Article
Google Scholar
Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-D point sets. IEEE Transac Pattern Anal Mach Intelli PAMI. 1987;9(5):698–700.
Article
CAS
Google Scholar
Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Transac Pattern Anal Mach Intelli. 1992;14(2):239–56.
Article
Google Scholar
Cerrillo-Cuenca E, Sanjosé J. Mapping and interpreting vanished archaeological features using historical aerial photogrammes and digital photogrammetry. Proceedings of the 38th Annual Conference on computer applications and quantitative methods in archaeology CAA2010. Oxford: Archaeopress; 2013. p. 43–6.
Google Scholar