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Abstract 

The integration of 3D geometric models with semantic information significantly improves the applicability and com-
prehensibility of cultural heritage. The semantic 3D modeling of Chinese grottoes poses challenges for individuals 
without expertise in cultural heritage due to gaps in domain knowledge and discrepancies in understanding. How-
ever, the existing domain ontology and knowledge graph provide an insufficient representation of the knowledge 
of Chinese grottoes. To overcome these obstacles, we propose a knowledge graph representation method to provide 
explicit knowledge for participants at different stages of semantic 3D modeling of Chinese grottoes, which includes 
schema layer construction and data layer construction. On the schema layer, we design a domain ontology named 
ChgOnto (Chinese Grottoes Ontology) that consists of four high-level concept classes: spatial object, informational 
object, digital device, and temporal object. Among the classes in the ChgOnto, the components (e.g., cliff wall, cave 
roof, cliff wall footing), elements (e.g., primary Buddha statue, pedestal, decoration), the properties (e.g., length, width, 
depth) of caves and niches in Chinese grottoes as well as the spatial relationships between them are all precisely 
defined. ChgOnto also reuse the classes from the renowned CIDOC CRM ontology in the cultural heritage field 
and GeoSPARQL in the geospatial domain, facilitating integration between the two subjects. Considering the schema 
layer as the conceptual data model, the data layer extracts knowledge from unstructured text through natural lan-
guage processing tools to instantiate the abstract classes and fill the properties of the schema layer. Finally, the knowl-
edge required for semantic 3D modeling of Chinese grottoes is expressed in the data layer by a knowledge graph 
in a fixed expression form. Dazu Rock Carvings, a World Heritage site in China, is selected as a case study to validate 
the practicality and effectiveness of the proposed method. The results reveal that our method offers a robust knowl-
edge-sharing platform for the semantic 3D modeling of Chinese grottoes and demonstrates excellent scalability. The 
method proposed in this paper can also serve as an informative reference for other types of cultural heritage.
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Introduction
It is no longer difficult to obtain high-precision 3D geo-
metric models of cultural heritage based on reality [1–3]. 
With regard to the applications involving 3D models of 

cultural heritage, the relevance extends beyond geomet-
ric and graphical aspects to encompass object semantics. 
For example, it is crucial to add physical and mechani-
cal parameters to the cliff in a 3D model and establish its 
structural relations with the mountain for analyzing the 
protection and reinforcement of the grottoes [4]. Assign-
ing rockfall hazard levels to cliff-top slopes can mitigate 
potential safety risks for tourists [5]. Semantic anno-
tations on 3D models of the artistic buddha statues in 
the grottoes facilitate cultural dissemination. However, 
purely geometric models are insufficient for the above-
mentioned applications. Semantic 3D modeling extracts 
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semantic classes of the geometric primitives from 3D 
models and associates the attributes of those extracted 
classes with rich information [6, 7], which have emerged 
as research trends recently [8, 9]. Integrating external 
knowledge can significantly enhance the semantic infor-
mation of the digital 3D model, improving its interpret-
ability and usability [10]. Automated algorithms for 
processing point cloud data have been developed to effi-
ciently and accurately extract geometric elements [11–
15]. It requires domain knowledge to relate the semantic 
meaning to the geometric elements. Semantic 3D mod-
eling is a complex process, where the lack of domain 
knowledge of cultural heritage among personnel involved 
in data collection, data processing and 3D modeling from 
different subject backgrounds leads to the inconsistency 
of the geometry and attributes in the 3D semantic model. 
Therefore, an effective knowledge-sharing platform is 
needed to support semantic 3D modeling and ensure the 
consistency and completeness of knowledge among dif-
ferent participants, particularly in the context of Chinese 
grottoes.

Chinese grottoes, which are carved stone caves or 
niches into cliffs functioning as buddhist temples, include 
UNESCO World Heritage sites like Mogao Caves, Yun-
gang Grottoes, Longmen Grottoes, and Dazu Rock Carv-
ings. Understanding the spatial structure (e.g., cliff wall, 
cave roof, cliff wall footing), basic elements (e.g.,buddha 
statue, pedestal, decoration), and attributes (e.g., length, 
width, depth) of Chinese grottoes poses significant chal-
lenges for people who are not experts in cultural heritage 
due to the lack of a guiding mechanism for the process 
of semantic 3D modeling. For instance, when perform-
ing the task of point cloud semantic segmentation on a 
grotto scene, the extraction of geometric primitives by 
data managers may not align with the requirements of 
cultural heritage. Similarly, when designing the underly-
ing data structure of semantic 3D models, it may be dif-
ficult for information system developers who are usually 
specialized in computer science to correctly define the 
properties of geometric objects to meet the requirements 
of applications. Even data managers and information 
system developers may have different understandings of 
the same geometric elements and attributes in the grotto 
scene. As such, in the different stages of semantic 3D 
modeling, it is necessary to provide adequate knowledge 
for people who are not experts in cultural heritage and to 
maintain the consistency of knowledge among different 
participants. Urgently, we need to establish a knowledge 
representation method for Chinese grottoes that facili-
tates knowledge sharing and interdisciplinary communi-
cation, thereby promoting collaboration among different 
stakeholders within a unified knowledge system [16].

Knowledge graphs, which are structured forms of 
human knowledge, have emerged as effective carriers for 
representing information and knowledge in the digital 
realm, gaining widespread attention from academia and 
industry [17]. Knowledge graphs accumulate and convey 
real-world knowledge, with nodes representing entities of 
interest and edges denoting relationships between enti-
ties [18]. Due to their impressive information integration 
and knowledge expression capabilities, knowledge graphs 
can provide valuable guidance for the semantic 3D mod-
eling of Chinese grottoes.

This paper presented a knowledge graph representation 
method for Chinese grottoes to address the problems of 
knowledge scarcity and inconsistency in semantic 3D 
modeling. The method consisted of two steps: schema 
layer construction and data layer construction. In the 
schema layer stage, we constructed an ontology model 
called ChgOnto following the ontology design processes, 
refining top-level concepts such as space objects, infor-
mation objects, digital device objects and time objects. 
ChgOnto provides a comprehensive representation of 
the spatial structure composition, elements of caves and 
niches and the spatial relationships between them. Addi-
tionally, it defines important properties of caves, niches, 
and the main buddha statues. Finally, we utilized natural 
language processing technology to construct a knowl-
edge graph of Chinese grottoes as the data layer, building 
upon the schema layer. By adopting the knowledge repre-
sentation form of a knowledge graph, this method offers 
unified, comprehensive and intelligent knowledge guid-
ance for professionals from various disciplines.

The main contributions of this paper are as follows:

• We constructed a domain ontology called ChgOnto 
for 3D semantic modeling of Chinese grottoes. 
ChgOnto addresses the existing gap in ontology 
design and knowledge representation specific to Chi-
nese grottoes.

• ChgOnto reused classes from the standardized ontol-
ogy CIDOC CRM (Conceptual Reference Model) in 
the field of cultural heritage and GeoSPARQL in geo-
graphic information. This ensures the extensibility 
of the ontology across these two domains and effec-
tively combines geographic information with cultural 
heritage.

• The spatial relationships were used as semantic 
encoding to express the geometric structure between 
the geometric primitives of the grottoes.

• A knowledge graph representation method was pro-
posed for Chinese grottoes, utilizing ChgOnto as a 
conceptual data model. This method leverages the 
schema layer of the knowledge structure, which acts 
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as a constraint, facilitating knowledge aggregation 
between nodes in the data layer.

This study provides a knowledge graph representa-
tion method in the absence of domain knowledge with 
regard to the semantic 3D modeling of Chinese grot-
toes, providing the necessary knowledge to participants 
from interdisciplinary backgrounds in the modeling 
process. The rest of this paper is organized as follows. 
In Sect. "Related work", related works and a summary is 
presented. The methodology of the knowledge graph rep-
resentation is given in Sect.  "The method of knowledge 
graph representation". In Sect.  "Experiment and result", 
the feasibility of this method was demonstrated through 
a case study. Dynamic knowledge graph, ontology exten-
sibility, and limitations are discussed in Sect.  "Discus-
sions". This paper ends with concluding remarks in 
Sect. "Conclusions".

Related work
Semantic 3D modeling
3D Geographic Information Systems (3D GIS) and His-
toric Building Information Modeling (HBIM) technolo-
gies greatly facilitate the fusion of semantics objects, 
attributes, and relationships in semantic 3D modeling 
of cultural heritage. This has expanded the applications 
of 3D models in cultural heritage such as visualization, 
information management, scene understanding, and 
decision-making support [19–21]. Through combining 
laser scanning, photogrammetry, and computer vision 
with 3D GIS, it was critical to create thematic vector lay-
ers for archaeological sites, which linked the geometric 
shapes with relevant information regarding their preser-
vation status, such as levels of decay, crack patterns, and 
materials characterization [22]. CityGML is the inter-
national standard of the Open Geospatial Consortium 
(OGC) for the semantic definitions of all objects (i.e., fea-
tures) that are relevant for applications of 3D city mod-
els: buildings, components, and the relations between 
them [23, 24]. This principal focus is on 3D city models, 
but Application Domain Extension (ADE) as its built-
in mechanism also adds new modules for city walls and 
monuments [25]. Li et al. [26] developed the ACRoofADE 
as an extension model of CityGML to express and ensure 
the consistency of the geometrical, semantic and topo-
logical relationships with regard to rebuilding the ancient 
Chinese-style architectural roof. Pepe et al. [27] proposed 
a specialized method for creating the CityGML model of 
a historically and architecturally important bridge. This 
model served as a valuable tool to support spatial plan-
ning process as well as implement measures for protec-
tion, monitoring and preservation of urban elements.

According to the history document (for HBIM) and 
reality-based recording data (for as-built HBIM), a 
library of parametric and semantic elements (such as a 
wall, roof, stair, door, and window) can be created and 
used to establish the heritage [28]. Converting point 
cloud to a semantically rich HBIM model involves sev-
eral tasks, including: (1) semantically segmenting the 
point clouds into geometric components, (2) creat-
ing geometric models of the components, (3) allocating 
semantic information such as component category and 
material to the components, and (4) restoring the spatial 
relationships between the geometric components [29]. 
HBIM enables the exchange of information and semantic 
interoperability among components in historic buildings 
through the use of Industry Foundation Classes (IFC) 
standards [30]. Cursi et al. [31] examined BIM methods 
to enhance semantic enrichment and expand the knowl-
edge representation through taking the context of HBIM 
process into consideration. Simeone et  al. [32] devel-
oped a knowledge base prototypal platform to enhance 
the semantic representation capability of applying BIM 
for architectural heritage. The INCEPTION project pro-
posed a workflow that placed focus on efficient 3D digi-
tization methods, post-processing tools for semantic 3D 
modeling and web-based solutions in order to provide 
access for both experts and non-experts [33]. Through 
the HBIM modeling process, it identified the cultural 
heritage buildings semantic ontology and data structure 
of information catalogue, which allowed the integration 
of semantic attributes with hierarchically and mutu-
ally aggregated 3D digital geometric models for heritage 
information management [34, 35].

Semantic 3D modeling, which incorporates 3D GIS 
and HBIM technologies, aims to convert unstructured 
geometric models to semantically interpretable geo-
metric objects in cultural heritage and to associate with 
additional knowledge [36]. However, due to the diver-
sity and geometric complexity of cultural heritage, this 
is a complex, time-consuming, and labor-intensive task 
that requires significant efforts and resources [37, 38]. 
To improve reconstruction efficiency, many researchers 
have focused on developing automated feature extrac-
tion and semantic segmentation algorithms of the point 
cloud, aiming to extract or segment semantically mean-
ingful geometric primitives economically and rapidly. 
However, another crucial issue has been overlooked, i.e., 
the process of semantic 3D modeling requires profes-
sionals with diverse backgrounds to collaborate, includ-
ing data collection personnel, data processing personnel, 
point cloud segmentation personnel, 3D modeling per-
sonnel, and system development personnel. The semantic 
meaning requires the formalized knowledge representa-
tion through a machine-readable and controlled specific 
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glossary, aiming to form a common basis to be recog-
nized and shared by different experts working in the 
cultural heritage field. The formalized knowledge rep-
resentation ensures the continuous update and refine-
ment of semantics over time, regardless of the type of 3D 
model used [39]. Due to the diversity of cultural heritage, 
the 3D sematic modeling requires organizing the knowl-
edge with formalized representation method [40].

Knowledge graph
In 2012, Google introduced the knowledge graph, aim-
ing to enhance the semantic understanding of search 
engine and improve the quality of user searches on the 
web [41]. Since its inception, knowledge graphs have 
been extensively used across various industries and 
applications such as multi-source knowledge fusion [42], 
intelligent question answering [43], complex parts assem-
bly processes [44], and knowledge sharing in product 
development [45]. Cultural heritage is one of the typical 
representatives of applying the knowledge graph method 
for the structured representation of domain knowledge 
[46]. According to the knowledge domains, knowledge 
graphs can be broadly categorized into open knowledge 
graphs and domain-specific knowledge graphs.

Open knowledge graph
In recent years, open knowledge graphs have been used 
to solve the problem of correlation between spatial enti-
ties and semantics. For example, Chen et  al. [47] pre-
sented a crowdsourced geographic knowledge graph 
named CrowdGeoKG which extracted different types of 
geo-entities from OpenStreetMap and enriched them 
with human geography knowledge from Wikidata. 
Dsouza et al. [48] introduced WorldKG with the aim of 
addressing the issues of high heterogeneity, diversity, and 
incompleteness in OpenStreetMap through providing 
a comprehensive semantic portrayal of geographic enti-
ties such as buildings, mountains and cities. Chadzynski 
et  al. [49] developed autonomous intelligent software 
agent system based on cognitive architecture, which was 
capable of automated instantiation, visualization and 
analysis of multifaceted City Information Models (CIM) 
in dynamic geospatial knowledge graphs. However, these 
knowledge graphs are applicable to macroscopic geo-
graphic entities but cannot meet the application require-
ments of expressing the microscopic geometric structure 
of spatial entities.

In the field of cultural heritage, Europeana [50], 
ArCo [51], and WarSampo [52] have been developed 
as semantic infrastructure and knowledge-sharing 
platforms, which advocate public participation and 
exploration. Europeana Data Model (EDM) used the 
standardized thesauri and vocabularies, providing the 

access to creating a semantic contextualization for 
objects. ESM allowed the semantic operations on the 
metadata and the enrichment with Linked Open Data 
on the web [53]. Nishanbaev et  al. [54] integrated 3D 
models of cultural heritage with linked open data (LOD) 
from platforms like DBpedia and GeoNames via Web-
GIS, which significantly enhanced digital cultural herit-
age exploration. Liu et  al. [55] constructed a large-scale 
knowledge graph of ancient Chinese history and culture 
to facilitate public understanding of historical and cul-
tural knowledge promptly and accurately. However, the 
data used for constructing the open knowledge graph 
comes from the Internet, which contains cross-domain 
knowledge with various data structure, emphasizing the 
breadth of knowledge while limiting the practicability 
in real-world applications [56, 57]. In specific domains 
and applications, more knowledge nodes do not neces-
sarily equate to better results. Users expect the underly-
ing structure and knowledge content of the knowledge 
graph to satisfy their application requirements entirely. 
Therefore, the construction method of open knowledge 
graph cannot meet the specific requirements of provid-
ing efficient knowledge for the semantic 3D modeling of 
grottoes, such as the basic components of the grottoes, 
the size of caves and niches, the name and the number 
of buddha statues, etc. Defining the abstract structure 
underlying the knowledge graph can aid in the effective 
conceptualization of domain knowledge.

Domain‑specific knowledge graph
Many scholars used abstract knowledge representation 
model as the constraint to build spatial-relevant knowl-
edge graphs to ensure that knowledge content and struc-
ture meet the application requirements. For instance, 
Wang et  al. [58] proposed a geographical knowledge 
representation model for constructing the map of geo-
graphical knowledge to present the characteristics of 
geographical knowledge from spatial and temporal views. 
Zheng et  al. [59] constructed a hierarchical structure 
knowledge representation model to express the spati-
otemporal characteristics as well as the evolution process 
of geographical elements. Berta et  al. [60] conceptually 
transformed the knowledge in the urban space domain 
into a semantic structure with concepts, elements and 
their interrelationships. They constructed the knowl-
edge representation model using the ontology method to 
improve the quality of urban space planning. Such spatial 
entity knowledge representation method requires either 
ontology design or conceptual model to provide the basic 
structure for building knowledge graphs.

CIDOC CRM stands out as one of the most successful 
formal ontologies in the cultural heritage field. It became 
the ISO 21127 standard in 2006 and was developed by 
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an interdisciplinary team of experts from the Inter-
national Documentation Committee (CIDOC) of the 
International Committee of Museums (ICOM) [61, 62]. 
Currently, CRM has spawned many extended models to 
handle specific subfields. For instance, CRMgeo is used 
as a global schema for integrating spatiotemporal prop-
erties of temporal entities and persistent items [63]. 
Niccolucci [64] based the CIDOC CRM and its exten-
sions  (CRMsci and  CRMdig) to record scientific experi-
ments involved in archaeological investigations, called 
 CRMas. Gergatsoulis et  al. [65] used CRM-based mod-
els  (CRMarchaeo and  CRMsci) to represent archaeological 
excavation activities and observations of archaeologists 
in excavation site work. Messaoudi et  al. [66] based 
CIDOC core,  CRMsci,  CRMdig, and  CRMinf to develop 
an ontology model for integrating semantic, spatial, and 
morphological dimensions. Ranjgar et al. [67] developed 
a POI (points of interest)—Based on data model for her-
itage sites in Iran, which integrates spatial semantics with 
cultural heritage information. Fafalios et al. [68] extended 
CIDOC CRM to construct the SeaLiT ontology as the 
architecture of the knowledge graph. Ronzion et al. [69] 
applied  CRMba to Roman architectural documentation, 
using semantic models to encode architectural structural 
information. Kim et al. [70] proposed an ontology-based 
Korean Cultural Heritage Data Model (KCHDM), sup-
port the extraction of semantic patterns from the abun-
dant textual data collected from the heritage database of 
related institutions.

In addition, there are also some novel ontology models 
used to express the specific knowledge structure in the 
field of cultural heritage. For example, Acierno et al. [71] 
constructed four main knowledge domains, including 
artifacts, life cycle, architectural heritage investigation 
process, and actors, for supporting the representation of 
information and knowledge in architectural heritage con-
servation and investigation activities. Cacciotti et al. [72] 
proposed a computer-readable ontology representation 
of historical building damage diagnosis containing trig-
gering events, mechanisms, agents, and damages. Quat-
trini et  al. [73] expressed historical buildings from the 
spatial scale as building, building components (e.g., nave, 
apse, vestibule, etc.), and building elements (e.g., doors, 
walls, columns, etc.), providing a data structure for the 
knowledge graph.

In the domain-specific knowledge graphs based on 
ontology or conceptual model, Bai et al. [74] constructed 
a cultural knowledge graph of Beijing, the ancient capi-
tal of China, based on domain ontology designed for 
material culture, system culture, behavioral culture, 
and mental culture, and developed a visual and interac-
tive question-and-answer platform. Fan et  al. [75] con-
structed an OpeOnto (opera ontology) containing deep 

semantic (theme, emotion) classes, based on which they 
constructed a multi-modal (semantic, image, and music) 
knowledge graph in the OpeOnto-driven way. Dou et al. 
[76] constructed the domain ontology and knowledge 
graph of Chinese intangible cultural heritage. Lu et  al. 
[77] constructed the YunJin knowledge graph with video 
as a data source by the YunJin Video Resource Ontology 
model (YJVO).

Brief summary
The CityGML and IFC standards in GIS and HBIM have 
not yet provided usable semantic specifications and 
knowledge for Chinese grottoes. Existing ontologies and 
knowledge graphs have not found relevant studies on 
knowledge representation in Chinese grottoes. Therefore, 
the unified description of entities and attributes, as well 
as the knowledge representation method for 3D semantic 
modeling tasks of Chinese grottoes, still requires further 
development and research.

In the knowledge expression of Chinese grottoes, open 
knowledge graphs cannot reach the depth and struc-
ture of knowledge in subdivided domains. Nonetheless, 
ontologies can mitigate this challenge, which provide 
a structured and formal way to represent knowledge. 
Through providing a shared vocabulary and a set of con-
cepts for a specific domain, ontology provides the basic 
concepts and structure for knowledge representation. 
Domain-specific knowledge graphs provide platforms for 
knowledge sharing and collaboration, allowing different 
individuals to access while ensuring knowledge consist-
ency in the production process. Using ontology-based 
conceptual structures can enhance and update knowl-
edge graphs without diluting knowledge due to the addi-
tion of nodes and edges.

The method of knowledge graph representation
This section provides a detailed introduction to the 
knowledge graph representation method for Chinese 
grottoes, which combines the "top-down" and "bottom-
up" strategies. The method consists of two stages: schema 
layer construction and data layer construction. Through 
summarizing the core knowledge and key terms in Chi-
nese grottoes, the schema layer adopted a "top-down" 
approach to defining abstract classes and attributes and 
designed an ontology model which is called ChgOnto. 
The ChgOnto contains the hierarchical, semantic, and 
spatial relationships between classes, which provides a 
logical framework and pattern constraint for knowledge 
representation in the data layer. The data layer used a 
"bottom-up" approach to extract instances of the spe-
cific knowledge required by the schema layer from highly 
specialized textual data such as monographs, literature 
resources, etc. For example, the schema layer defines 
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"grottoes" as a conceptual term, and the data layer needs 
to extract concrete instances such as Longmen Grottoes 
and Yungang Grottoes from the data sources. Instances 
are expressed as nodes and those instances are connected 
by relationships to form a triple as < Entity, relationship, 
Entity > and < Entity, property, Property value > . Sub-
sequently, based on the knowledge structure provided 
by the schema layer, the triples are associated to form 
a semantic web. The overall process of the method is 
shown in Fig. 1.

Schema layer construction
The schema layer construction used the Ontology Devel-
opment 101 method [78] for ontology design, which 
serves as the conceptual data model and logical founda-
tion for knowledge graph representation. The method 
consists of the following steps: (1) determine the domain 
and scope; (2) reuse existing ontologies; (3) enumerate 
important terms; (4) define the classes and the class hier-
archy; (5) define the properties of classes and the relation 

between classes; (6) define the facets of the properties; 
(7) create instances. The steps will be discussed in the fol-
lowing subparts.

Ontology design
Step1: Determine the  domain and  scope Defining the 
domain and scope of an ontology is crucial for target-
ing the Chinese grottoes and clarifying the purpose and 
knowledge content of the ontology design. In this study, 
the ChgOnto was developed for the knowledge represen-
tation of Chinese grottoes, thus providing corresponding 
knowledge for supporting the 3D semantic modeling pro-
cess. Point clouds are the primary data source in the digi-
tal preservation of cultural heritage, but they pose several 
challenges for real-world applications, such as being mas-
sive, non-structured, and lacking neighboring and seman-
tic information. To gain a high-level understanding of the 
3D scene, it is necessary to extract meaningful geometric 
units with explicit semantics and functions from the point 
clouds and convert the unordered and discrete point 

Fig. 1 The process of knowledge graph representation method for 3D semantic modeling
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clouds into a combination of geometric primitives with 
topological relationships.

A typical workflow from point cloud data collection, 
point cloud semantic segmentation and 3D reconstruc-
tion to application system development is illustrated 
in Fig. 2. In the semantic 3D modeling process of Chi-
nese grottoes, participants need to clarify the following 
questions:

• For data collectors, what is the area of data collection 
and what is the point of interest to be collected?

• For data managers, what is the spatial composition 
of the cave and niche in the grotto scene, and which 
entities should be segmented?

• For 3D modelers, how should the topological rela-
tions between entities be constructed? What are the 
attributes of the entities, and what are their corre-
sponding attribute values?

• For software developers, how should the data model 
of the database be designed?

The above questions indicate that the semantic 3D 
modeling of Chinese grottoes involves the coopera-
tion of participants from different disciplinary back-
grounds. These participants usually do not come from 
the cultural heritage field. The knowledge graphs based 
on ChgOnto for semantic 3D modeling can provide 
these participants with unified knowledge and attrib-
ute information of grottoes. This can reduce the diffi-
culty of individuals without cultural heritage expertise 
to complete their work independently and alleviate 

misunderstanding of the grottoes among people with 
different backgrounds.

Step2: Reuse existing ontologies The purpose of reusing 
existing ontologies is to improve the reusability and main-
tainability of an ontology, provide opportunities for inte-
gration with other ontologies, and reduce ontology design 
costs. Ontology reuse can typically be achieved through 
reference and inheritance.

In the ChgOnto model, the classes related to time, 
location, and data types were reused through referenc-
ing them from the CRM standard ontology and its exten-
sion. For example, the E2 Temporal Entity, E53 Place, and 
E59 Primitive Value were referenced from the CRM core. 
Additionally,  CRMdig provided concepts and properties 
for describing digital data and digital devices, such as D1 
Digital Object and D8 Digital Device.

GeoSPARQL is a standard in the Semantic Web of 
the OGC for representing and querying geospatial-
related data [79]. In GeoSPARQL, the geo: SpatialOb-
ject is defined as "The class Spatial Object represents 
everything that can have a spatial representation". The 
geo: SpatialObject class in GeoSPARQL was adopted to 
represent all objects of Chinese grottoes and their sur-
rounding environment. By inheriting the class geo: Spa-
tialObject, these objects are treated as spatial objects 
within ChgOnto. Furthermore, the Egenhofer Topologi-
cal Relations from GeoSPARQL were reused to describe 
the topological relationships between different objects in 
grottoes. Table 1 provides a list of the main classes reused 
in ChgOnto and their respective sources.

Fig. 2 The typical workflow from point cloud data acquisition to applications



Page 8 of 26Yang and Hou  Heritage Science          (2023) 11:266 

Step3: Enumerate important terms The purpose of enu-
merating important terms is to capture the basic vocabu-
lary used in the field and ensure the ontology’s compre-
hensiveness within its domain coverage. By identifying 
the most important terms, ontology developers can estab-
lish a hierarchical structure of classes and properties that 
reflect the knowledge structure of the domain, enabling 
the construction of more complex models. Conceptual 
terms, which represent the highest level of abstraction in 
an ontology, describe the knowledge classification within 
the ontology. These terms have semantic relationships 
that form a knowledge graph structure through linkage.

In this paper, the representation of Chinese Grottoes 
was divided into several categories (i.e., classes defined 
or referenced in this paper are indicated in italics, such 
as the class Chinese Grottoes): Spatial Object, Digital 
object, Digital Device Objects, and Temporal Object. The 
Spatial Object includes Chinese grottoes, grotto groups, 
cave and niche, environments, and cave and niche Com-
ponents. The Chinese grottoes refers to the collective 
name of multiple grottoes in a region, including multiple 
grotto groups. A grotto group consists of a series of cave 
and niche. For instance, the Longmen Grottoes, as an 
instance of Chinese grottoes, are composed of four grotto 
groups: Xishan Grottoes, Dongshan Grottoes, Xiang-
shan Temple, and Baiyuan. The basic units that make 
up a group are called “a cave” or “a niche”. The environ-
ments class is composed of natural entity and artificial 
entity surrounding the cave and niche, coexisting with 
the grottoes. The place object describes the geographi-
cal range of the grottoes, while the site object refers to 
the specific address of the grotto groups. The Digital 
object is the basic data source for 3D reconstruction and 

is obtained through Digital Device Objects from the digi-
talization of the grottoes and their surrounding environ-
ment. The Temporal Object represents time-dependent 
entities, such as periods (Qing Dynasty, Tang Dynasty 
and Ming Dynasty, etc.) and time span (e.g., 1900–1950). 
Figure 3 presents the conceptual framework composed of 
important terms, providing the knowledge structure for 
the knowledge graph representation. More specific key 
terms, such as spatial structure and elements of a cave 
and niche, will be discussed in detail below.

Step4: Define the classes and the class hierarchy The pur-
pose of defining classes and class hierarchies is to clas-
sify and organize concepts within the ontology. In this 
research, the main objects of focus are caves and niches. 
From a spatial composition perspective, this step involves 
defining the structural composition of caves and niches, 
as well as identifying the elements contained within each 
structure.

There are various types of grottoes in China. For 
instance, grottoes in the Central Plains region are primar-
ily caves formed by natural cliffs or artificially cut moun-
tains, creating roughly vertical cliffs that are then carved 
into caves with Buddha statues. Representative examples 
of such grottoes include the Yungang Grottoes in Datong, 
Shanxi Province, and the Longmen Grottoes in Luoyang, 
Henan Province. On the other hand, grottoes in south-
ern China mainly consist of carved niches on cliff walls, 
where Buddha statues are placed. Notable examples of 
such niches include the Dazu Rock Carvings in Chong-
qing and the Qianfo Temple in Guangyuan, Sichuan.

From the geometric composition of the cave and 
niche, the cave has a large depth (like a room, usually 

Table 1 The list of the main classes reused in ChgOnto and their respective sources

Class name Source Description

E2 Temporal Entity CIDOC CRM Over a limited extent of time

E4 Periods CIDOC CRM Sets of coherent phenomena or cultural manifestations occurring in time and space

E52 Time Span CIDOC CRM Beginning, an end, and a duration

E27 Site CIDOC CRM The location of a specific activity can also refer to the address of a particular event

E53 Place CIDOC CRM In the natural space

E59 Primitive Value CIDOC CRM Values of primitive data types

E60 Number CIDOC CRM Any encoding of computable (algebraic) values

E61 Time Primitive CIDOC CRM Primitive value for time

E62 String CIDOC CRM Coherent sequences of binary-encoded symbols

E22 Human-Made Object CIDOC CRM All persistent physical objects of any size that are purposely created by human activity

E73 Information Object CIDOC CRM Identifiable immaterial items, such as data sets, images, texts, multimedia objects

D1 Digital Object CRMdig Identifiable immaterial items that can be represented as sets of bit sequences

D9 Data Object CRMdig The direct result of a digital measurement

D8 Digital Device CRMdig A device for acquiring digitized data

Geo: SpatialObject GeoSPARQL Everything that can have a spatial representation
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can accommodate people), which can be divided into 
front cliff wall, left cliff wall, right cliff wall, and cave roof 
(Fig. 4a), and some caves have pillars with sculptures on 
them. The niche (Fig. 4b) is shallow in depth, with only 
one front cliff wall and no cave roof, while there is a niche 
eave (like the eaves of a modern building) at the junction 
of the cliff and the mountain. In addition, a cave or niche 
may contain a smaller one (Fig.  4b). Specifically, “cave 
and niche (窟龛 in Chinese)” is a special term in Chi-
nese grottoes, which represents the basic units that make 
up a grottoes group. Although “Cave” and “Niche” may 
have different geometric shapes as indicated in Fig.  4, 
they own the same semantic properties including name, 

number, height, width and depth as indicated in Table 3. 
Therefore, we do not divide “cave and niche” into two 
separate classes in this paper.

Grottoes’ artistic creations are primarily reflected on 
the cliff wall. Consequently, the various types of artis-
tic content found on the cliff wall are abstracted as ele-
ments. This abstraction allows each element to possess 
clear semantics and properties within grotto art. The 
elements within caves and niches are categorized as 
primary Buddha statues, other Buddha statues, deco-
rations, pedestals, and inscriptions. The primary Bud-
dha statue refers to the largest statue within the cave 
or niche or a series of statues of the same size. On the 
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Fig. 3 Conceptual framework of ontology consisting of important terms

(a)The basic spatial structure of the cave (b) The basic spatial structure of the niche

Fig. 4 Schematic representation of the spatial structure of the cave niche
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other hand, the other Buddha statues encompass dis-
ciples, guards, or small decorative Buddhas associated 
with the main Buddhas. Figure  5 illustrates the ele-
ments found within a specific niche. Additionally, envi-
ronmental entities and digital data entities are further 

subdivided. The main classes and class hierarchy that 
have been defined are presented in Table 2.

Step5: Define the  properties of  classes and  the  relation 
between  classes The properties of classes play a vital 
role in defining the conceptual structure within a class. A 

Fig. 5 the main elements of the niche

Table 2 The list of main classes and the class hierarchy

Class name Superclass Description

Chinese Grottoes geo: SpatialObject An abstract term that generally refers to the grottoes in an area

Grotto Group Chinese Grottoes A Chinese Grotto contains multiple grotto groups

Cave and Niche Grotto Group A basic unit of grottoes and several caves and niches constitute the grottoes group

Cave roof Cave and Niche The top of the cave, exclusive to the cave

Niche eave Cave and Niche A protrusion at the top of a niche

Cliff wall Cave and Niche A cave contains multiple cliff walls, while a niche has only one

Cliff wall footing Cave and Niche Located at the bottom of the cliff wall, protecting the cave and niche

Primary Buddha statue Cave and Niche One or a series of statues that are the most dominant in the cave and niche

Other Buddha statue Cave and Niche Disciples, guards, or decorative statues of the main Buddha

Decoration Cliff Wall A decorative design on the facade of a cave and niche

Pedestal Cliff Wall Located at the bottom of a Buddha statue, the Buddha stands or sits on the pedestal

Inscription Cliff Wall Flat cliffs or stone tablets with inscriptions

Mountain Natural Environment The mountain blends into the cave and niche

Vegetation Natural Environment The vegetation around the cave and niche

River Natural Environment The water system around the cave and niche

Road surface Artificial Environment Man-made landscape road

Guardrail Artificial Environment Grottoes scenic area man-made safety facilities

Data structure Data Object The data structure of the point cloud

Point cloud density Data Object The average density of a point cloud data
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property consists of a property name, a property domain, 
and a property range. The property domain specifies the 
class to which the property applies, while the property 
range indicates the type of value that the property can 
have. Table  3 presents the definitions of properties for 
the Cave and Niche class and the Primary Buddha Statue 
class. Although Cave and Niche may have different geo-
metric shapes as explained in Step 4, they own the same 
semantic properties including name, number, height, 
width and depth.

The relationships between classes encompass both 
semantic relations and spatial relations. Semantic rela-
tions involve verbs such as “located in”, “found in”, 
“digitized”, “composed of”, and others, which establish 
connections between classes based on their meanings. 
Spatial relations, on the other hand, reflect the spatial 
connections that arise from the interaction of different 
entities in a grotto’s scene. In the context of 3D recon-
struction, understanding the spatial relations between 
objects is crucial for modelers to accurately restore 
the scene. The relationships between classes can be 
expressed using triples such as < Entity, semantic relation, 
Entity > and < Entity, spatial relation, Entity > .

The ChgOnto primarily defined two types of spatial 
relationships, i.e., topological relationships and relative 
positional relationships. The topological relationship 
captures the proximity and association between entities 
and is adapted from the Egenhofer Topological Rela-
tion in GeoSPARQL. It consists of eight distinct types 
of topological relations (Fig. 6). The relative positional 
relationship describes the spatial positioning of entities 
relative to each other in space, as depicted in Fig. 7. For 

a clearer understanding, we show the spatial relation-
ship of partly entities in the HuaYanSanSheng niche 
through a schematic diagram (Fig. 8).

Step6: Define the  facets of  the  properties Facts refer to 
the metric information related to the properties of a class. 
For instance, the measurement of the height and shoulder 
width of a Buddha statue is represented by a numerical 
value in centimeters. The properties describing the pos-
ture and clothing characteristics of a Buddha statue are 
represented by strings. In the context of the CRM, the 
E59 Primitive Value is used to represent facts, which can 
include E60 Number, E61 Time Primitive, and E62 String.

Step7 Create instances The last step in ontology design 
is to create an instance of the class. To define an instance, 
first need to determine the class to which the instance 
belongs, and then match the actual property values for 
the properties of the class. Taking the scene in Fig. 6 as 
an example for the class “Cave and Niche”, the conceptual 
graphs (Fig.  9) of the scene instance were constructed. 
The conceptual graphs mainly show the structural com-
position of the HuaYanSanSheng Niche. The niche eaves 
include the two rays as the Decoration. The cliff wall con-
sists of the class Primary Buddha statues as three entities 
(Wenshu Buddha, PuXian Buddha, and LuSheNa Bud-
dha), 81 small round niches as the class of Other Buddha 
Statues, and two lotuses as the class of Dedestal. The cliff 
wall footing includes the Inscription.

Table 3 The properties of class Cave and Niche and class Primary Buddha statue

Name Domain Range Instance

Name Cave and Niche; Primary Buddha statue E62 String HuaYanSanSheng Niche

ID Cave and Niche; Primary Buddha statue E62 String DZ-BD-04

Number Cave and Niche; Primary Buddha statue E62 String No. 5

Width Cave and Niche E60 Number 1500 cm

Height Cave and Niche E60 Number 800 cm

Depth Cave and Niche E60 Number 600 cm

Statue height Primary Buddha statue E60 Number 700 cm

Shoulder width Primary Buddha statue E60 Number 200 cm

Body posture Primary Buddha statue E62 String Standing, Sitting

Hairstyle Primary Buddha statue E62 String Tall corolla

Facial expression Primary Buddha statue E62 String Full and round

Left hand posture Primary Buddha statue E62 String Strut seat

Right hand posture Primary Buddha statue E62 String Knead

Dress Primary Buddha statue E62 String U-neck coat

Accessories Primary Buddha statue E62 String Necklace

Preservation state Primary Buddha statue E62 String Weathered
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The conceptual data model of the schema layer
Based on the ontology design, a domain ontology for 
3D semantic modeling of Chinese grottoes can be con-
structed. This ontology model serves as a data conceptual 
model, which is essential for constraining the knowledge 
graph representation within the data layer. Figure 10 pro-
vides a clear visualization of the basic structure of the 
schema layer, including the classes and the class hierar-
chies. Different colors are employed to distinguish the 
classes that have been reused from other ontologies, aid-
ing in visualizing the distinct origins of the classes. The 
properties of the Cave and Niche Component, and the 
Cave and Niche Element, are also provided in this model.

Data layer construction
The schema layer provides a standardized framework for 
representing knowledge graphs. The data layer instan-
tiates the abstract classes of the schema layer through 
knowledge extraction and fills in the attributes of the 
classes. The instantiated knowledge exists as a set of 
nodes and relations. These nodes consist of instances of 
conceptual classes, while the relations connect the nodes, 
forming a knowledge web. The construction of the data 
layer involves knowledge extraction, entity alignment, 
and knowledge storage.

Knowledge extraction
Knowledge extraction is the process of extracting knowl-
edge units such as entities, relations, and properties 
from semi-structured or unstructured text data [80]. In 
natural language processing, knowledge extraction is also 
known as named entity recognition (NER), which is used 
to identify named entities, such as countries, institutions, 
places, and people, from text data sets. The text data of 
this study came from professional books and academic 
papers related to Chinese grottoes, which are more reli-
able than open data on the Internet. In this research, 
NER is mainly utilized to extract caves and niches, bud-
dha statues, and other entities from text. For example, 
“HuaYanSanSheng Niche” is recognized as an instance of 
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Cave and Niche, while “LuSheNa Buddha” is identified as 
an instance of the Primary Buddha Statue.

After the NER process, a discrete set of named enti-
ties is obtained. To form a semantic web as a knowledge 
structure, it is necessary to extract relations between 
entities and link entities through relations to triples. For 
instance, < HuaYanSanSheng Niche, include, LuShaNa 
Buddha > , < HuaYanSanSheng Niche, include, Wen-
Shu Buddha > , and < HuaYanSanSheng Niche, include, 
PuXian Buddha > . Properties extraction involves 
obtaining attribute names and attribute values of an 
instance. For example, < HuaYanSanSheng Niche, 
height, 820  cm > and < HuaYanSanSheng Niche, width, 
1550 cm > are examples of extracted properties.

Entity alignment
Entity alignment involves associating data after knowl-
edge extraction through entity alignment and property 
fusion. The key to entity alignment lies in entity dis-
ambiguation and property disambiguation. Entity dis-
ambiguation aims to determine whether entities with 
different names in various data sources refer to the same 

real-world object, thus eliminating the phenomenon of 
“different words describing one object”. For example, 
“HuaYanSanSheng”, “HuaYanSanSheng Niche”, “HuaY-
anSanSheng Rock Carving”, and "HuaYanSanSheng 
Image" all represent the same entity. Therefore, seman-
tic consistency is necessary, and these entities should be 
named as “HuaYanSanSheng Niche”. Moreover, there are 
cases where named entities have the same name but rep-
resent different real entities, known as the phenomenon 
of “one word describing different objects”. For instance, 
both the HuaYanSanSheng Niche and the YuanJue Cave 
contain the LuSheNa Buddha statue. To distinguish these 
entities, uniquely identified properties are added. For 
example, the unique identifier of the LuSheNa Buddha 
in the HuaYanSanSheng Niche is set as DZ-BD-04-F-
MB-01, while the unique identifier of the same statue in 
the YuanJue Cave is set as DZ-BD-08-R-MB-03.

Similar to entity disambiguation, attribute disambigua-
tion addresses the issue of multiple attribute names refer-
ring to the same attribute or the absence of uniform units 
of measure for attributes. For example, when describing 
the width of a niche, there are synonyms such as “niche 
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width”, “width”, and “image width”, but they all represent 
the same attribute. Additionally, it is necessary to stand-
ardize the measurement of attribute values. For instance, 
820 cm and 8.2 m represent the same attribute value.

Knowledge storage
Knowledge storage involves transforming massive real-
world information into structured data that conforms to 
computer processing models. To achieve this goal, struc-
tured description languages such as XML, RDF, RDFS, 
and OWL are used to represent knowledge. OWL lan-
guage is particularly useful for representing knowledge 
in complex scenarios and adding additional predefined 
vocabulary to describe resources [81]. Graph databases 
have become the mainstream method for knowledge 
storage. Based on graph models, data is represented 
in the form of nodes and edges, clearly illustrating the 
dependencies between data nodes. Compared to tradi-
tional relational databases, graph databases have a com-
plete graph query language and various graph mining 
algorithms, providing advantages in the speed of deep 
association queries. In this paper, Neo4j [82], a popu-
lar graph database management system, was utilized to 
store and maintain knowledge triples. In this study, we 
first utilized CSV files to store the extracted entities and 
properties. The Neo4j’s LOAD CSV command was then 
employed to transfer the data from the CSV file into the 
graph database. This command treats each row in the 
CSV file as a node and each column as a property associ-
ated with that node. We used the MERGE clause to cre-
ate or match the nodes and the relationships between 
nodes based on the entities and relationships found in 
the extracted knowledge triples. Finally, all the triples 
were imported and mapped, and further stored in the 
database to ensure the persistence of the changes in the 
Neo4j database.

Experiment and result
Data collection
Dazu Rock Carvings are a remarkable collection of Bud-
dhist sculptures and rock-cut caves located in Dazu 
County, Chongqing Municipality, China. Dating back to 
the  9th to the thirteenth centuries, these carvings have 
been well-known for their exceptional artistry, intricate 
details, and diverse themes. Dazu Rock Carvings was 
recognized as a United Nations Educational, Scientific 
and Cultural Organization (UNESCO) World Cultural 
Heritage site in 1999, representing significant cultural 
and historical treasure in China. Since Dazu Rock Carv-
ings consists of a large number of grotto groups, caves 
and niches, it is a typical representative among Chinese 

grottoes. In addition, the records and description of Dazu 
Rock Carvings in professional publications and books are 
abundant, which can be used as effective data sources 
for analysis. As such, we chose the Dazu Rock Carvings 
as the experimental area to conduct case study in this 
work. The Dazu rock carvings cover a vast area, which 
comprises five grotto groups: Beishan, Baodingshan, 
Shimenshan, Nanshan and Shizhuanshan (as shown in 
Fig. 11a). The yellow line in Fig. 11b represents the Baod-
ingshan grotto group, which consists of numerous caves 
and niches. To ensure the quality of the knowledge, the 
experimental data was sourced from two Chinese mono-
graphs, namely “Dazu Rock Carvings (大足石刻)” (ISBN 
978-7-5647-8384-6) and “Research and Appreciation of 
Dazu Rock Carvings (大足石刻研究与欣赏)” (ISBN 978-
7-229-06584-3), as well as Chinese academic papers. Text 
data was extracted from these sources as experimental 
data.

Ontology model
This research employed the OWL language and the Pro-
tégé 5.6.1 ontology editor to formalize domain knowl-
edge. Protégé is a widely used ontology construction 
tool developed by Stanford University that enables users 
to create and edit ontologies [83]. It supports multiple 
ontology representation languages, including OWL, RDF, 
RDFS, and OWL2. Figure 12 shows a visual representa-
tion of developing the ChgOnto in the Protégé platform. 
The ChgOnto defined 44 classes, 48 relationships, and 16 
attributes. Among them, 11 classes are reused in CRM 
Core, starting with CRM_E; 3 classes in  CRMdig are ref-
erence, starting with  CRMdig_D; one GeoSPARQL class 
and 8 types of topology relationships are inheritance. The 
main entities and relations in Protégé software are shown 
in Fig. 13.

Knowledge graph construction
The NER is implemented using the BERT-BiLSTM-
CRF combination model, which can handle long-term 
dependencies in text and capture contextual information 
[84]. Relations and properties extraction are achieved 
through the method of rule matching. The knowledge 
extraction process in this paper relied on two open-
source natural language processing toolkits, OpenNRE 
[85] and CRF +  +  [86]. The knowledge triples were struc-
tured based on the schema layer and stored in the Neo4j 
graph database for management and storage.

The knowledge graph of Baodingshan grotto group 
contains 19 classes, including Conceptual node, Place, 
Site, Periods, Chinese grottoes, Grotto groups, Cave and 
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(a) Dazu Rock Carvings consist of five 

grotto groups

(b) The Baodingshan Grotto group is composed of a 

series of caves and niches (along the yellow line)

Fig. 11 The geographical location of the experiment area

Fig. 12 The screenshot of the ChgOnto in the Protégé environment
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niche, Cave roof, Niche eave, Cliff wall footing, Left cliff 
wall, Right cliff wall, Front cliff wall, Pillar, Primary bud-
dha statue, Other buddha statue, Inscription, Pedestal 
and Decoration. As shown in Fig. 14a, each class is com-
posed of a different number of entities. For example, the 
class Periods includes 7 entities, such as Tang Dynasty, 
Five Dynasties and Song Dynasty etc. The class Chinese 
grottoes includes 5 entities, such as Dazu rock carvings, 
Longmen grottoes and Anyue grottoes etc. The class 
Pedestal includes 32 entities, such as two lotus pedes-
tal, cloudy pedestal and quadrate pedestal etc. The class 

Decoration includes 32 entities, such as Bodhi trees, aus-
picious clouds and lotus leaves etc.

A total of 42 entities belonging to the Class Cave and 
niche were extracted, such as Peacock Ming King cave, 
Shuiyue Guanyin niche, and PiLu cave etc. Each entity 
was described by 5 properties of name, number, height, 
width, and depth. Figure  14b shows the number of 
extracts for each property in the class Cave and niche. 
Take the entity of Peacock Ming King cave for exam-
ple. The property value of name in this entity is “Pea-
cock Ming King cave”, the property value of number is 
“No.155”, the property value of height is 347  cm, the 

Fig. 13 The main entities, properties, and relations defined in the ChgOnto by Protégé
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(a) The number of entities of various classes
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property value of width is 290 cm and the property value 
of depth is 603 cm. The number of properties extracted 
for height, width and depth is less than 42 due to the lack 
of relevant descriptions in the data source.

A total of 122 entities belonging to the Class Primary 
buddha statue were extracted. As illustrated in Fig. 14c, 
each entity was described by 11 properties, including 
name with 122 distinct values (e.g., WenShu buddha, 
PuXian buddha), statue height with 39 distinct values 
(e.g., 191 cm), shoulder width (e.g., 40 cm), body posture 
(e.g., sitting, playing and standing), hairstyle (e.g., high 
square corolla, crown, and nautilus and bun hair), facial 
expression (e.g., handsome, dignified and solemn), left 
hand posture (e.g., placed on the chest and lotus in hand), 
right hand posture (e.g., holding a bow and arrow, and 
holding a shield), dress (e.g., U-collar coat and monk’s 
coat), accessories (e.g., necklace), preservation state (e.g., 
damaged and intact).

The proposed knowledge graph visualized using 
Neo4j is shown in Fig.  15, which included a total of 19 
classes, 483 entities and 492 relationships. For example, 
the entity of Chinese grotto includes the entity of grotto 
groups, thus the “contains” relationship exists between 
Dazu Rock Carvings and Baodingshan (see Fig.  11) and 
the entity of grotto groups consists of the entity of cave 
and niche. In the case where the environmental entities 
and the relationships between the structural composi-
tions and elements of the cave and niche were lacking in 

the textual description, we manually supplemented them 
with common sense or by referring to relevant images. 
As indicated in Fig. 8, the cliff wall is covered by several 
small round niches. Such commonly acknowledged infor-
mation is usually abbreviatory in the textual data sources 
and cannot be automatically extracted by the aforemen-
tioned methods. As such, we manually added the “cover” 
and “covered by” relationships between cliff wall and 
small round niche in order to improve the integrity of the 
knowledge graph.

Application of knowledge graph
Knowledge retrieval
To ensure unified knowledge guidance in different stages 
of semantic modeling for the Baodingshan Grottoes 
group, the Cypher language is used to search the con-
structed knowledge graph. The retrieval conditions are as 
follows:

“match (n:Grotto_Group{name:’Baodingshan’}) - 
[r*0..]-> (result) return result”

As shown in Area 1 in Fig.  16, the searches results 
display the components and elements of the caves and 
niches contained in the Baodingshan grotto group. 
Detailed node properties can be queried by node names. 
The Area 2 and Area 3 in Fig. 16 show the property value 
of the entity belonging to the Class Primary Buddha 
Statue and Cave and Niche. These entities, relationships 

Fig. 15 Visual interface of knowledge graph in Neo4j
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and property values provide meaningful information and 
knowledge for different participants in the process of 
semantic 3D modeling.

The Knowledge graph also enables attribute retrieval 
based on entity name. For instance, with regard to que-
rying the attribute value of the Primary Buddha Statue 

Fig. 16 Search results of the knowledge graph of the Baodingshan Grotto group (Area1 is a capture of knowledge graph showing entity names 
and relationships. Area2 and Area3 show examples of property values of the entities)

named "WenShu Buddha", the following search condition 
can be used:

“match (n:Primary_Buddha_Statue{Name:’WenShu 
Buddha’}) return n”

The search results returned by the database in JSON 
format are as follows:
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Topological relation retrieval
In 3D semantic modeling, restoring the correct topo-
logical relationship between different geometric units 
is crucial to ensure the model’s quality. The topological 
relationships among components and elements provided 
in the knowledge graph can serve as modeling references 
for 3D modelers. Figure  17 illustrates the topological 
relationships among different components and elements 
of the HuaYanSanSheng Niche.

{

  "identity": 28,

  "labels": [

    "Primary_Buddha_Statue"

  ],

  "properties": {

    "Left_hand_posture": "Pagoda",

    "Accessories": "YingLuo necklace",

    "Facial_expression": "Round face",

    "Preservation_state": "Largely intact",

    "Dress": "U-Neck clothing",

    "Shoulder_width": "-",

    "ID": "DZ-BD-04-F-MB-03",

    "Hairstyle": "Coronet",

    "Statue_height": "-",

    "Right_hand_posture": "Pagoda",

    "Name": "WenShu Buddha"

  },

  "elementId": "28"

}

In the actual application process, to retrieve entities 
that have a "meet" relation with "LuSheNa Buddha", the 
following retrieval conditions can be used:

“match (n:Primary_Buddha_Statue{Name:’LuSheNa 
Buddha’}) -[r:has_topological_relation{type:’meet’}]-> 
(result) return result”

The retrieval results are displayed in Fig. 18. A total of 4 
nodes were queried, indicating that the entities that have 
a "meet" relation with "LuSheNa Buddha" include three 
components of "niche eaves", "front of the cliff", and "the 
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cliff wall footing", and one pedestal element, namely "two 
lotus pedestal".

Discussions
Dynamic knowledge graph
The dynamic knowledge graph refers to the revision 
of inaccurate or outdated attribute information in the 
knowledge graph over time [87]. The process of updat-
ing knowledge within a knowledge graph can be logi-
cally divided into two categories: schema layer updates 
and data layer updates. The schema layer updates involve 
the introduction of new concepts into the schema layer 
whenever fresh data is obtained. The data layer updates, 
on the other hand, primarily focus on the addition or 
revision of entities, relations and attribute values. Dur-
ing data layer updates, it is crucial to ensure the reliabil-
ity and consistency of the data source. For instance, when 
analyzing the HuaYanSanSheng Niche in the Dazu Rock 
Carvings, the size of the Buddha statue provided by pro-
fessional texts may lack precision due to the timeliness 

of the information and the use of different measurement 
methods. In such circumstances, attribute values can 
be refined by measuring the Euclidean distance in point 

Fig. 18 The retrieval results of the entities that have a “meet” 
relationship with “LuSheNa Buddha”

Fig. 17 The topological relationship among the structural components and elements of the HuaYanSanSheng Niche
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cloud data (see Fig.  19). Table  4 provides a comparison 
of attribute measures in professional books with values 
measured in point cloud data.

Extensibility
Grottoes, as immovable cultural relics, have specific 
geographical locations and embody both natural and 
cultural characteristics. The domain ontology proposed 
in this research has utilized many ontology classes 
already defined in CIDOC CRM and GeoSPARQL. The 
geo: SpatialObject class in GeoSPARQL, a generic spa-
tial object description class, plays a significant role in 
this. Consequently, the ChgOnto proposed here has 
high expandability. For instance, it can incorporate 
domain ontologies and knowledge graphs related to 
rock and soil types (e.g., sandstone, limestone, and con-
glomerate), climate conditions (e.g., aridity, humidity, 

and high temperatures) and disease characteristics 
(e.g., weathering, cracking, and waterlogging). This 
would enhance its utility in natural disaster risk assess-
ment and rock mass stability analysis of immovable cul-
tural relics.

Analysis of limitations
The knowledge graph construction approach based on 
the "schema layer-data layer" model can be negatively 
affected by the incompleteness or inadequacy of abstrac-
tion during the ontology design process. Such issues are 
likely to compromise the usefulness of knowledge graphs 
in practical applications. For example, due to the unique-
ness of cultural heritage and the limitations of cognition, 
the ChgOnto model designed in this study may not be 
directly applied for all Chinese grottoes. In this case, the 

Fig. 19 The property values in the knowledge graph are measured in the point cloud for knowledge updating

Table 4 The property values of the entities from different data sources

Entity name Property name Data source Property values

HuaYanSanSheng niche Height Professional book 820 cm

Point cloud 813 cm

Width Professional book 1550 cm

Point cloud 1520 cm

LuSheNa buddha statue Statue height Professional book Not provided

Point cloud 636 cm

Shoulder width Professional book Not provided

Point cloud 203 cm
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ChgOnto model can be used as a basis on which further 
extension and adjustment can be made. Therefore, more 
extensive research is needed to revise and extend the 
ontology model. Also, gathering user feedbacks and sug-
gestions and adjusting the ontology model to meet the 
requirements of practical applications, is a critical step 
for ensuring ontology usability.

Entity disambiguation and attribute disambigua-
tion still relies on manual processing and verification. 
Although this process is labor-intensive and time-con-
suming, it yields high-quality and highly reliable domain 
knowledge graphs, which provides robust support for 
practical applications. As mentioned in the disambigua-
tion issue in Sect.  “Entity alignment”, there are a large 
number of entity names and units of attribute values 
need to be unified. Striking a balance between quality and 
efficiency remains crucial in the construction of domain 
knowledge graphs. Therefore, it is necessary to system-
atically establish a glossary or dictionary of Chinese 
grottoes and reduce manual processing in the process of 
entity disambiguation and attribute disambiguation.

Although the creation of domain-specific knowledge 
graphs based on ontology construction ensures that the 
structure and content of knowledge are more in line with 
users’ requirements, it falls short in terms of efficiency 
when compared to automatic knowledge graph construc-
tion methods. The automatic construction method of 
knowledge graph of Chinese grottoes based on ontology 
is likely to be developed through defining a set of seman-
tic rules. In addition, as mentioned in Sect.  "Knowledge 
Graph Construction", due to the lack of description of 
topological relations of various geometric elements in the 
textual data, those relations are constructed manually. 
It is promising that the topological relations of the geo-
metric elements extracted from point cloud data can be 
identified by adopting advanced image processing tech-
nologies in order to alleviate labor cost.

Conclusions
This research proposes a knowledge graph representa-
tion method for the 3D semantic modeling of Chinese 
grottoes. It establishes a standardized knowledge-sharing 
mechanism and solves the problem of lacking knowledge 
guidance in the modeling process, which results in incon-
sistent understanding of grotto knowledge among per-
sonnel with multidisciplinary backgrounds. In this work, 
the ontology model named ChgOnto is first designed, 
which is used as the schema layer defining the structure 
of building the domain-specific knowledge graph of Dazu 
rock carvings. This knowledge graph contains 19 classes, 
483 entities and 492 relationships. Among them, 5 prop-
erties are defined in the cave and niche class, of which 

189 distinct property values are extracted. The primary 
buddha statues defines 11 properties and extracts 593 
property values. The entity and attribute information 
can be requested to support the semantic 3D modeling 
of Chinese grottoes through conducting the knowledge 
query operation on the knowledge graph. It reveals that 
the proposed method has strong scalability and repli-
cability, enabling provide the knowledge sharing in the 
process of 3D semantic modeling of Chinese grottoes. In 
the future, the proposed knowledge graph representation 
method can be reused, adjusted and extended to accom-
modate other types of cultural heritage.
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