Ghedini N, Ozga I, Bonazza A, Dilillo M, Cachier H, Sabbioni C: Atmospheric aerosol monitoring as a strategy for the preventive conservation of urban monumental heritage: The Florence Baptistery. Atmos Environ. 2011, 45 (33): 5979-5987. 10.1016/j.atmosenv.2011.08.001. [http://linkinghub.elsevier.com/retrieve/pii/S1352231011008090]
Google Scholar
Horemans B, Cardell C, Bencs L, Kontozova-deutsch V, Wael KD, Van Grieken R: Evaluation of airborne particles at the Alhambra monument in Granada, Spain. Microchem J. 2011, 99 (2): 429-438. 10.1016/j.microc.2011.06.018. [http://dx.doi.org/10.1016/j.microc.2011.06.018]
Google Scholar
Monforti F, Bellasio R, Bianconi R, Clai G, Zanini G: An evaluation of particle deposition fluxes to cultural heritage sites in Florence, Italy. Sci Total Environ. 2004, 334-335: 61-72. [http://www.ncbi.nlm.nih.gov/pubmed/15504493]
Google Scholar
Watt J, Jarrett D, Hamilton R: Dose-response functions for the soiling of heritage materials due to air pollution exposure. Sci Total Environ. 2008, 400 (1-3): 415-424. 10.1016/j.scitotenv.2008.07.024. [http://www.ncbi.nlm.nih.gov/pubmed/18774161]
Google Scholar
Karaca F: Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul. J Cultural Heritage. 2012, Article in press. [http://www.sciencedirect.com/science/article/pii/S129620741200091X]
Google Scholar
de la Fuente D, Vega JM, Viejo F, Díaz I, Morcillo M: City scale assessment model for air pollution effects on the cultural heritage. Atmos Environ. 2011, 45 (6): 1242-1250. 10.1016/j.atmosenv.2010.12.011. [http://linkinghub.elsevier.com/retrieve/pii/S1352231010010368]
Google Scholar
Camuffo D, Bernardi A: Controlling the microclimate and particulate matter inside the historic anatomy theatre, Padua. Mus Manage Curatorship. 1996, 15 (3): 285-298. [http://www.tandfonline.com/doi/abs/10.1080/09647779709515489]
Google Scholar
Spolnik Z, Worobiec A, Samek L, Bencs L, Belikov K, Van Grieken R: Influence of different types of heating systems on particulate air pollutant deposition: The case of churches situated in a cold climate. J Cult Heritage. 2007, 8: 7-12. 10.1016/j.culher.2006.09.003. [http://www.sciencedirect.com/science/article/pii/S1296207406001105]
Google Scholar
Samek L, Maeyer-Worobiec AD, Spolnik Z, Bencs L, Kontozova V, Bratasz L, Kozlowski R, Van Grieken R: The impact of electric overhead radiant heating on the indoor environment of historic churches. J Cult Heritage. 2007, 8 (4): 361-369. 10.1016/j.culher.2007.03.006. [http://www.sciencedirect.com/science/article/pii/S1296207407001021]
Google Scholar
Urosevic M, Yebra-Rodríguez A, Sebastián-Pardo E, Cardell C: Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (Spain). Sci Total Environ. 2011, 414: 564-575. [http://www.ncbi.nlm.nih.gov/pubmed/22153605]
Google Scholar
Gysels K, Deutsch F, Van Grieken R: Characterisation of particulate matter in the Royal Museum of Fine Arts, Antwerp, Belgium. Atmos Environ. 2002, 36 (25): 4103-4113. 10.1016/S1352-2310(02)00229-7. [http://www.sciencedirect.com/science/article/pii/S1352231002002297]
Google Scholar
Mouratidou T, Samara C: PM2.5 and associated ionic component concentrations inside the archaeological museum of Thessaloniki. N. Greece. Atmos Environ. 2004, 38 (27): 4593-4598. [http://www.sciencedirect.com/science/article/pii/S1352231004004637]
Google Scholar
Worobiec A, Samek L, Krata A, Meel KV, Krupinska B, Stefaniak EA, Karaszkiewicz P, Van Grieken R: Transport and deposition of airborne pollutants in exhibition areas located in historical buildings–study in Wawel Castle Museum in Cracow, Poland. J Cult Heritage. 2010, 11 (3): 354-359. 10.1016/j.culher.2009.11.009. [http://www.sciencedirect.com/science/article/pii/S1296207410000221]
Google Scholar
Hu T, Lee S, Cao J, Chow JC, Watson JG, Ho K, Ho W, Rong B, An Z: Characterization of winter airborne particles at Emperor Qin’s Terra-cotta Museum, China. Sci Total Environ. 2009, 407 (20): 5319-5327. 10.1016/j.scitotenv.2009.06.044. [http://www.sciencedirect.com/science/article/pii/S0048969709006251]
Google Scholar
Gysels K, Delalieux F, Deutsch F, Camuffo D, Bernardi A, Sturaro G, Busse HJ, Wieser M, Van Grieken R: Indoor environment and conservation in the Royal Museum of Fine Arts, Antwerp, Belgium. J Cult Heritage. 2004, 5 (2): 221-230. 10.1016/j.culher.2004.02.002. [http://www.sciencedirect.com/science/article/pii/S1296207404000330]
Google Scholar
Verney-Carron A, Dutot A, Lombardo T, Chabas A: Predicting changes of glass optical properties in polluted atmospheric environment by a neural network model. Atmos Environ. 2012, 54 (0): 141-148. [http://www.sciencedirect.com/science/article/pii/S1352231012002312]
Google Scholar
Camuffo D, Brimblecombe P, Van Grieken R, Busse HJ, Sturaro G, Valentino A, Bernardi A, Blades N, Shooter D, De Bock L, Gysels K, Wieser M, Kim O: Indoor air quality at the Correr Museum, Venice, Italy. Sci Total Environ. 1999, 236 (1-3): 135-152. 10.1016/S0048-9697(99)00262-4. [http://www.ncbi.nlm.nih.gov/pubmed/10535149]
Google Scholar
Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, Garcia-Orellana I, Lucarelli F, Ludwig N, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R: An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: The case study of Michelozzo’s Courtyard in Florence (Italy). Sci Total Environ. 2010, 408 (6): 1403-1413. 10.1016/j.scitotenv.2009.07.030. [http://www.sciencedirect.com/science/article/pii/S0048969709006718]
Google Scholar
Krupinska B, Worobiec A, Rotondo GG, Novakovic V, Kontozova V, Ro CU, Van Grieken R, De Wael K: Assessment of the air quality (NO2, SO2, O3 and particulate matter) in the Plantin-Moretus Museum/Print Room in Antwerp, Belgium, in different seasons of the year. Microchem J. 2012, 102 (0): 49-53. [http://www.sciencedirect.com/science/article/pii/S0026265X11002177]
Google Scholar
Hanapi N, Din S: A Study on the airborne particulate matter in selected museums of peninsular Malaysia. Procedia - Soc Behav Sci. 2012, 50 (0): 602-613. [http://www.sciencedirect.com/science/article/pii/S1877042812032016]
Google Scholar
Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P: Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ. 2009, 407 (6): 2039-2050. 10.1016/j.scitotenv.2008.10.067. [http://www.ncbi.nlm.nih.gov/pubmed/19101018]
Google Scholar
Yoon YH, Brimblecombe P: The distribution of soiling by coarse particulate matter in the museum environment. Indoor air. 2001, 11 (4): 232-240. 10.1034/j.1600-0668.2001.110404.x. [http://www.ncbi.nlm.nih.gov/pubmed/11761598]
Google Scholar
Ferm M, Watt J, O’Hanlon S, De Santis F, Varotsos C: Deposition measurement of particulate matter in connection with corrosion studies. Anal Bioanal Chem. 2006, 384 (6): 1320-1330. 10.1007/s00216-005-0293-1. [http://www.ncbi.nlm.nih.gov/pubmed/16518649]
Google Scholar
Andelova L, Smolik J, Ondrakova L, Ondracek J, Lopez-Aparicio S, Grontoft T, Stankiewicz J: Characterization of airborne particles in the Baroque Hall of the National Library in Prague. E-Preservation Sci. 2010, 7: 141-146. [http://www.morana-rtd.com/e-preservationscience/2010/Andelova-26-04-2010.pdf]
Google Scholar
Nazaroff WW: Airborne Particles in Museums. 1993, Marina del Rey Calif: Getty Conservation Institute, [http://www.getty.edu/conservation/publications_resources/pdf_publications/pdf/airborne.pdf]
Google Scholar
McMurry P, Shepherd M, Vickery J: Particulate Matter Science for Policy Makers: a NARSTO Assessment. 2004, EPRI Report 1007735,Cambridge: Cambridge University Press, [http://books.google.co.uk/books?id=1giH-mvhhw8C]
Google Scholar
AQEG: Particulate Matter in the UK. 2005, London: Defra
Google Scholar
Butterfield D, Beccaceci S, Quincey P, Sweeney B, Whiteside K, Fuller G, Green D, Grieve A: 2011 Annual report for the UK black carbon network. Tech. rep., National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW 2012 [http://uk-air.defra.gov.uk/library/reports?report_id=730]
National air quality and emissions trends report. Tech. rep., United States Environmental Protection Agency, Office of Air Quality, Planning and Standards, Research Triangle Park NC 27711 2001
Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N, Puig O: PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos Environ. 2001, 35 (36): 6407-6419. 10.1016/S1352-2310(01)00361-2. [http://www.sciencedirect.com/science/article/pii/S1352231001003612]
Google Scholar
Díaz-Robles L, Fu J, Reed G: Modeling and source apportionment of diesel particulate matter. Environ Int. 2008, 34: 1-11. 10.1016/j.envint.2007.06.002. [http://www.sciencedirect.com/science/article/pii/S0160412007001109]
Google Scholar
AQEG: Fine Particulate Matter (PM2.5) in the United Kingdom. 2012, London: Defra
Google Scholar
Yan F, Winijkul E, Jung S, Bond TC, Streets DG: Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. Atmos Environ. 2011, 45 (28): 4830-4844. 10.1016/j.atmosenv.2011.06.018. [http://www.sciencedirect.com/science/article/pii/S135223101100611X]
Google Scholar
Streets DG, Gupta S, Waldhoff ST, Wang MQ, Bond TC, Yiyun B: Black carbon emissions in China. Atmos Environ. 2001, 35 (25): 4281-4296. 10.1016/S1352-2310(01)00179-0. [http://www.sciencedirect.com/science/article/pii/S1352231001001790]
Google Scholar
Air quality guidelines for Europe. Tech. rep., World Health Organization Regional Office for Europe, WHO Regional Publications, Copenhagen 2000
European Comission air quality standards. 2008, [http://ec.europa.eu/environment/air/quality/standards.htm]
Buseck PR, Adachi K, Gelencsér A, Tompa E, Pósfai M: Are black carbon and soot the same?. Atmos Chem Phys Discuss. 2012, 12 (9): 24821-24846. 10.5194/acpd-12-24821-2012. [http://www.atmos-chem-phys-discuss.net/12/24821/2012/]
Google Scholar
Song J, Wang J, Boehman AL: The role of fuel-born catalysts in diesel particulate oxidation behavior. Combustion Flame. 2006, 146 (1– 2): 73-84. [http://www.sciencedirect.com/science/article/pii/S0010218006001143]
Google Scholar
Lee KO, Cole R, Sekar R, Choi MY, Kang JS, Bae CS, Shin HD: Morphological investigation of the microstructure, dimensions, and fractal geometry of diesel particulates. Proc Combust Inst. 2002, 29: 647-653. 10.1016/S1540-7489(02)80083-9. [http://www.sciencedirect.com/science/article/pii/S1540748902800839]
Google Scholar
Williams D, Milne J, Roberts D, Kimberlee M: Particulate emissions from in-use motor vehicles: Spark and ignition vehicles. Atmos Environ. 1989, 23 (12): 2639-2645. 10.1016/0004-6981(89)90544-1. [http://linkinghub.elsevier.com/retrieve/pii/0004698189905441]
Google Scholar
Mattimaricq M: Chemical characterization of particulate emissions from diesel engines: A review. J Aerosol Sci. 2007, 38 (11): 1079-1118. 10.1016/j.jaerosci.2007.08.001. [http://linkinghub.elsevier.com/retrieve/pii/S0021850207001231]
Google Scholar
Sarvi A, Lyyränen J, Jokiniemi J, Zevenhoven R: Particulate emissions from large-scale medium-speed diesel engines: 2. Chemical composition. Fuel Process Technol. 2011, 92 (10): 2116-2122. 10.1016/j.fuproc.2011.06.021. [http://linkinghub.elsevier.com/retrieve/pii/S0378382011002414]
Google Scholar
Sahan E, Brink H, Weijers E: Carbon in atmospheric particulate matter. Tech. rep., ECN Energy Research Centre of the Netherlands 2008
Schauer JJ: Evaluation of elemental carbon as a marker for diesel particulate matter. J Exposure Anal Environ Epidemiol. 2003, 13 (6): 443-453. 10.1038/sj.jea.7500298. [http://www.ncbi.nlm.nih.gov/pubmed/14603345]
Google Scholar
Kendall M, Hamilton RS, Watt J, Williams ID: Characterisation of selected speciated organic compounds associated with particulate matter in London. Atmos Environ. 2001, 35 (14): 2483-2495. 10.1016/S1352-2310(00)00431-3. [http://www.sciencedirect.com/science/article/pii/S1352231000004313]
Google Scholar
Sotoa KF, Garzab KM, Shia Y, Murra LE: Direct contact cytotoxicity assays for filter-collected, carbonaceous (soot) nanoparticulate material and observations of lung cell response. Atmos Environ. 2008, 42 (9): 1970-1982. 10.1016/j.atmosenv.2007.12.027. [http://www.sciencedirect.com/science/article/pii/S1352231007011296]
Google Scholar
Pagels J, Wierzbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A, Swietlicki E, Bohgard M: Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci. 2009, 40 (3): 193-208. 10.1016/j.jaerosci.2008.10.005. [http://www.sciencedirect.com/science/article/pii/S0021850208001894]
Google Scholar
Buonanno G, Morawska L, Stabile L: Particle emission factors during cooking activities. Atmos Environ. 2009, 43 (20): 3235-3242. 10.1016/j.atmosenv.2009.03.044. [http://www.sciencedirect.com/science/article/pii/S1352231009002775]
Google Scholar
Jones N, Thornton C, Mark D, Harrison R: Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmos Environ. 2000, 34 (16): 2603-2612. 10.1016/S1352-2310(99)00489-6. [http://linkinghub.elsevier.com/retrieve/pii/S1352231099004896]
Google Scholar
Bernardi A, Camuffo D: Microclimate in the Chiericati Palace Municipal Museum, Vicenza. Mus Manage Curatorship. 1995, 14: 5-18. [http://www.sciencedirect.com/science/article/pii/026047799500020S]
Google Scholar
Afshari A, Matson U, Ekberg LE: Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air. 2005, 15 (2): 141-150. 10.1111/j.1600-0668.2005.00332.x. [http://dx.doi.org/10.1111/j.1600-0668.2005.00332.x]
Google Scholar
Na K, Cocker D: Organic and elemental carbon concentrations in fine particulate matter in residences, schoolrooms, and outdoor air in Mira Loma, California. Atmos Environ. 2005, 39 (18): 3325-3333. 10.1016/j.atmosenv.2005.01.054. [http://linkinghub.elsevier.com/retrieve/pii/S1352231005001457]
Google Scholar
Koponen IK, Asmi A, Keronen P, Puhto K, Kulmala M: Indoor air measurement campaign in Helsinki, Finland 1999 – the effect of outdoor air pollution on indoor air. Atmos Environ. 2001, 35 (8): 1465-1477. 10.1016/S1352-2310(00)00338-1. [http://www.sciencedirect.com/science/article/pii/S1352231000003381]
Google Scholar
Hussein T, Hämeri K, Heikkinen MS, Kulmala M: Indoor and outdoor particle size characterization at a family house in Espoo–Finland. Atmos Environ. 2005, 39 (20): 3697-3709. 10.1016/j.atmosenv.2005.03.011. [http://linkinghub.elsevier.com/retrieve/pii/S1352231005002359]
Google Scholar
Thornburg J, Ensor DS, Rodes CE, Lawless PA, Sparks LE, Mosley RB: Penetration of particles into buildings and associated physical factors. Part I: Model development and computer simulations. Aerosol Sci Technol. 2001, 34 (3): 284-296. [http://www.tandfonline.com/doi/abs/10.1080/02786820119886]
Google Scholar
Gotschi T, Oglesby L, Mathys P, Monn C, Manalis N, Koistinen K, Jantunen M, Hanninen O, Polanska L, Kunzli N: Comparison of black smoke and PM2.5 levels in indoor and outdoor environments of four European cities. Environ Sci & Technol. 2002, 36 (6): 1191-1197. 10.1021/es010079n. [http://www.ncbi.nlm.nih.gov/pubmed/11944668]
Google Scholar
Nazaroff WW: Indoor particle dynamics. Indoor Air. 2004, 14 (Suppl 7): 175-183. [http://www.ncbi.nlm.nih.gov/pubmed/15330785]
Google Scholar
Chao C: Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmos Environ. 2003, 37 (30): 4233-4241. 10.1016/S1352-2310(03)00560-0. [http://linkinghub.elsevier.com/retrieve/pii/S1352231003005600]
Google Scholar
Zhu Y, Hinds WC, Krudysz M, Kuhn T, Froines J, Sioutas C: Penetration of freeway ultrafine particles into indoor environments. J Aerosol Sci. 2005, 36 (3): 303-322. 10.1016/j.jaerosci.2004.09.007. [http://www.sciencedirect.com/science/article/pii/S002185020400343X]
Google Scholar
Ligocki MP, Salmon LG, Fall T, Jones MC, Nazaroff WW, Cass GR: Characteristics of airborne particles inside southern California museums. Atmos Environ. 1993, 27 (5): 697-711. 10.1016/0960-1686(93)90188-5. [http://www.sciencedirect.com/science/article/pii/0960168693901885]
Google Scholar
Liu DL, Nazaroff WW: Particle penetration through building cracks. Aerosol Sci Technol. 2010, 37 (October 2011): 37-41.
Google Scholar
Liu DL, Nazaroff WW: Modeling pollutant penetration across building envelopes. Atmos Environ. 2001, 35 (26): 4451-4462. 10.1016/S1352-2310(01)00218-7. [http://linkinghub.elsevier.com/retrieve/pii/S1352231001002187]
Google Scholar
Tian L, Zhang G, Lin Y, Yu J, Zhou J, Zhang Q: Mathematical model of particle penetration through smooth/rough building envelop leakages. Building and Environ. 2009, 44 (6): 1144-1149. 10.1016/j.buildenv.2008.08.007. [http://linkinghub.elsevier.com/retrieve/pii/S0360132308002047]
Google Scholar
Hussein T, Glytsos T, Ondráček J, Dohányosová P, ždímal V, Hämeri K, Lazaridis M, Smolík J, Kulmala M: Particle size characterization and emission rates during indoor activities in a house. Atmos Environ. 2006, 40 (23): 4285-4307. 10.1016/j.atmosenv.2006.03.053. [http://www.sciencedirect.com/science/article/pii/S1352231006003554]
Google Scholar
Viana M, Díez S, Reche C: Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment. Atmos Environ. 2011, 45 (35): 6359-6367. 10.1016/j.atmosenv.2011.08.044. [http://www.sciencedirect.com/science/article/pii/S1352231011008685]
Google Scholar
Camuffo D, Sturaro G, Valentino A: Showcases: a really effective mean for protecting artworks?. Thermochimica Acta. 2000, 365 (1–2): 65-77. [http://www.sciencedirect.com/science/article/pii/S0040603100006146]
Google Scholar
Weber S: Exposure of churchgoers to airborne particles. Environ Sci Technol. 2006, 40 (17): 5251-5256. 10.1021/es0517116. [http://pubs.acs.org/doi/abs/10.1021/es0517116]
Google Scholar
Hirvonen A, Pasanen P, Tarhanen J, Ruuskanen J: Thermal desorption of organic compounds associated with settled household dust. Indoor Air. 1994, 4 (4): 255-264. 10.1111/j.1600-0668.1994.00006.x. [http://dx.doi.org/10.1111/j.1600-0668.1994.00006.x]
Google Scholar
Pedersen EK, Bjorseth O, Syversen T, Mathiesen M: Physical changes of indoor dust caused by hot surface contact. Atmos Environ. 2001, 35 (24): 4149-4157. 10.1016/S1352-2310(01)00195-9. [http://www.sciencedirect.com/science/article/pii/S1352231001001959]
Google Scholar
Mortensen LH, Rode C, Peuhkuri R: Investigation of airflow patterns in a microclimate by particle image velocimetry (PIV). Build Environ. 2008, 43 (11): 1929-1938. 10.1016/j.buildenv.2007.11.012. [http://linkinghub.elsevier.com/retrieve/pii/S0360132307002351]
Google Scholar
Hinds WC: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 1999, New York: Wiley, [http://books.google.co.uk/books?id=ORxSAAAAMAAJ]
Google Scholar
Camuffo D: Wall temperature and the soiling of murals. Mus Manage Curatorship. 1991, 10 (4): 373-383. [http://www.sciencedirect.com/science/article/pii/026047799190029W]
Google Scholar
Nazaroff WW, Cass GR: Mathematical modeling of indoor aerosol dynamics. Environ Sci Technol. 1989, 23 (2): 157-166. 10.1021/es00179a003. [http://pubs.acs.org/doi/abs/10.1021/es00179a003]
Google Scholar
K Lai AC, Nazaroff WW: Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci. 2000, 31 (4): 463-476. 10.1016/S0021-8502(99)00536-4. [http://linkinghub.elsevier.com/retrieve/pii/S0021850299005364]
Google Scholar
Nazaroff WW, Ligocki MP, M T, Cass GR: Particle deposition in museums: comparison of modeling and measurement results. Aerosol Sci Technol. 1990, 13 (3): 332-348. 10.1080/02786829008959449. [http://www.tandfonline.com/doi/abs/10.1080/02786829008959449]
Google Scholar
Hussein T, Hruška A, Dohányosová P, Džumbová L, Hemerka J, Kulmala M, Smolík J: Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmos Environ. 2009, 43 (4): 905-914. 10.1016/j.atmosenv.2008.10.059. [http://linkinghub.elsevier.com/retrieve/pii/S1352231008010005]
Google Scholar
Wallace L: Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmos Environ. 2004, 38 (3): 405-413. 10.1016/j.atmosenv.2003.10.003. [http://linkinghub.elsevier.com/retrieve/pii/S1352231003008641]
Google Scholar
He C, Morawska L, Gilbert D: Particle deposition rates in residential houses. Atmos Environ. 2005, 39 (21): 3891-3899. 10.1016/j.atmosenv.2005.03.016. [http://linkinghub.elsevier.com/retrieve/pii/S1352231005002815]
Google Scholar
Zhao B, Wu J: Modeling particle deposition onto rough walls in ventilation duct. Atmos Environ. 2006, 40 (36): 6918-6927. 10.1016/j.atmosenv.2006.06.015. [http://www.sciencedirect.com/science/article/pii/S1352231006006698]
Google Scholar
Thatcher TL, Lai AC, Moreno-Jackson R, Sextro RG, Nazaroff WW: Effects of room furnishings and air speed on particle deposition rates indoors. Atmos Environ. 2002, 36 (11): 1811-1819. 10.1016/S1352-2310(02)00157-7. [http://linkinghub.elsevier.com/retrieve/pii/S1352231002001577]
Google Scholar
Guingo M, Minier JP: A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. J Aerosol Sci. 2008, 39 (11): 957-973. 10.1016/j.jaerosci.2008.06.007. [http://linkinghub.elsevier.com/retrieve/pii/S0021850208001171]
Google Scholar
Thatcher TL, Layton DW: Deposition, resuspension, and penetration of particles within a residence. Atmos Environ. 1995, 29 (13): 1487-1497. 10.1016/1352-2310(95)00016-R.
Google Scholar
Ferro AR, Kopperud RJ, Hildemann LM: Source strengths for indoor human activities that resuspend particulate matter. Environ Sci Technol. 2004, 38 (6): 1759-1764. 10.1021/es0263893. [http://www.ncbi.nlm.nih.gov/pubmed/15074686]
Google Scholar
Kontozova-Deutsch V, Cardell C, Urosevic M, Ruiz-Agudo E, Deutsch F, Van Grieken R: Characterization of indoor and outdoor atmospheric pollutants impacting architectural monuments: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci. 2011, 63: 1433-1445. 10.1007/s12665-010-0657-5. [http://dx.doi.org/10.1007/s12665-010-0657-5]
Google Scholar
Lazaridis M, Drossinos Y: Multilayer resuspension of small identical particles by turbulent flow. Aerosol Sci Technol. 1998, 28 (June 2012): 37-41. [http://www.tandfonline.com/doi/abs/10.1080/02786829808965545]
Google Scholar
Lazaridis M, Drossinos Y, Georgopoulos P: Turbulent resuspension of small nondeformable particles. J Colloid Interface Sci. 1998, 204: 24-32. 10.1006/jcis.1998.5521. [http://www.ncbi.nlm.nih.gov/pubmed/9665763]
Google Scholar
Biasi L, Reyes ADL, Reeks MW, Santi GFD: Use of a simple model for the interpretation of experimental data on particle resuspension in turbulent flows. J Aerosol Sci. 2001, 32 (10): 1175-1200. 10.1016/S0021-8502(01)00048-9.
Google Scholar
Loosmore GA: Evaluation and development of models for resuspension of aerosols at short times after deposition. Atmos Environ. 2003, 37 (1352): 639-647.
Google Scholar
Schnell M, Cheung C, Leung C: Investigation on the coagulation and deposition of combustion particles in an enclosed chamber with and without stirring. J Aerosol Sci. 2006, 37 (11): 1581-1595. 10.1016/j.jaerosci.2006.06.001. [http://linkinghub.elsevier.com/retrieve/pii/S0021850206000942]
Google Scholar
Gidhagen L, Johansson C, Langner J, Foltescu V: Urban scale modeling of particle number concentration in Stockholm. Atmos Environ. 2005, 39: 1711-1725. [http://linkinghub.elsevier.com/retrieve/pii/S1352231004011033]
Google Scholar
Schnell M, Cheung C, Leung C: Coagulation of diesel particles in an enclosed chamber. J Aerosol Sci. 2004, 35 (10): 1289-1293. 10.1016/j.jaerosci.2004.05.004. [http://linkinghub.elsevier.com/retrieve/pii/S0021850204000874]
Google Scholar
Morawska L, Jamriska M, Bofinger ND: Size characteristics and ageing of the environmental tobacco smoke. Sci Total Environ. 1997, 196: 43-55. 10.1016/S0048-9697(96)05388-0. [http://linkinghub.elsevier.com/retrieve/pii/S0048969796053880]
Google Scholar
Eastwood P: Particulate Emissions from Vehicles. 2008, Wiley-professional engineering publishing series, New York: John Wiley & Sons, [http://books.google.co.uk/books?id=ihLfwQJ0HPEC]
Google Scholar
Gidhagen L, Johansson C, Langner J, Olivares G: Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmos Environ. 2004, 38 (14): 2029-2044. 10.1016/j.atmosenv.2004.02.014. [http://linkinghub.elsevier.com/retrieve/pii/S1352231004001372]
Google Scholar
Jamriska M, Morawska L: Quantitative assessment of the effect of surface deposition andcoagulation on the dynamics of submicrometer particles indoors. Aerosol Sci Technol. 2003, 37 (5): 425-436. 10.1080/02786820300975. [http://www.tandfonline.com/doi/abs/10.1080/02786820300975]
Google Scholar
Gidhagen L, Johansson C, Strom J, Kristensson A, Swietlicki E, Pirjola L, Hansson HC: Model simulation of ultrafine particles inside a road tunnel. Atmos Environ. 2003, 37 (15): 2023-2036. 10.1016/S1352-2310(03)00124-9. [http://www.sciencedirect.com/science/article/pii/S1352231003001249]
Google Scholar
Ketzel M, Berkowicz R: Modelling the fate of ultrafine particles from exhaust pipe to rural background: an analysis of time scales for dilution, coagulation and deposition. Atmos Environ. 2004, 38 (17): 2639-2652. 10.1016/j.atmosenv.2004.02.020. [http://www.sciencedirect.com/science/article/pii/S1352231004001724]
Google Scholar
Hanley JT, Ensor DS, Smith DD, Sparks LE: Fractional aerosol filtration efficiency of in-duct ventilation air cleaners. Indoor Air. 1994, 4: 169-178. 10.1111/j.1600-0668.1994.t01-1-00005.x.
Google Scholar
ASHRAE: Museums, libraries and archives. Heating, Ventilating and Air-Conditioning: Applications. ASHRAE Handbook. 2003, Atlanta: ASHRAE
Google Scholar
Brimblecombe P, Grossi CM: Aesthetic thresholds and blackening of stone buildings. Sci Total Environ. 2005, 349 (1-3): 175-189. 10.1016/j.scitotenv.2005.01.009. [http://www.ncbi.nlm.nih.gov/pubmed/16198679]
Google Scholar
Hamilton R, Mansfield T: The soiling of materials in the ambient atmosphere. Atmos Environ. 1992, 26 (18): 3291-3296. 10.1016/0960-1686(92)90345-L. [http://www.sciencedirect.com/science/article/pii/096016869290345L]
Google Scholar
Bellan LM, Salmon LG, Cass GR: A Study on the human ability to detect soot deposition onto works of art. Environ Sci Technol. 2000, 34 (10): 1946-1952. 10.1021/es990769f. [http://pubs.acs.org/doi/abs/10.1021/es990769f]
Google Scholar
Pio CA, Ramos MM, Duarte AC: Atmospheric aerosol and soiling of external surfaces in an urban environment. Atmos Environ. 1998, 32 (11): 1979-1989. 10.1016/S1352-2310(97)00507-4. [http://linkinghub.elsevier.com/retrieve/pii/S1352231097005074]
Google Scholar
Adams S: A particle accumulation study during the reconstruction of The Great Court, British Museum. J Cult Heritage. 2002, 3 (4): 283-287. 10.1016/S1296-2074(02)01237-2. [http://linkinghub.elsevier.com/retrieve/pii/S1296207402012372]
Google Scholar
Mansfield T, Hamilton R, Ellis B, Newby P: Diesel particulate emissions and the implications for the soiling of buildings. Environmentalist. 1991, 11 (4): 243-254. 10.1007/BF01266558. [http://www.springerlink.com/index/10.1007/BF01266558]
Google Scholar
Ford D: Deposition rates of particulate matter in the internal environment of two London museums. Atmos Environ. 1999, 33 (29): 4901-4907. 10.1016/S1352-2310(99)00289-7. [http://linkinghub.elsevier.com/retrieve/pii/S1352231099002897]
Google Scholar
Schwar MJR: Nuisance dust deposition and soiling rate measurements. Environ Technol. 1998, 19 (2): 223-229. 10.1080/09593331908616674. [http://www.tandfonline.com/doi/abs/10.1080/09593331908616674]
Google Scholar
Beloin NJ, Haynie FH: Soiling of building materials. J Air Pollut Control Assoc. 1975, 25 (4): 399-403. 10.1080/00022470.1975.10470099. [http://www.tandfonline.com/doi/abs/10.1080/00022470.1975.10470099]
Google Scholar
Grossi C: Soiling of building stones in urban environments. Build Environ. 2003, 38: 147-159. 10.1016/S0360-1323(02)00017-3. [http://linkinghub.elsevier.com/retrieve/pii/S0360132302000173]
Google Scholar
Watt J, Tidblad J, Kucera V, Hamilton R: The Effects of Air Pollution on Cultural Heritage. 2009, New York: Springer, [http://books.google.co.uk/books?id=AgHp6udMwOIC]
Google Scholar
Brimblecombe P, Grossi CM: Millennium-long damage to building materials in London. Sci Total Environ. 2009, 407 (4): 1354-1361. 10.1016/j.scitotenv.2008.09.037. [http://www.ncbi.nlm.nih.gov/pubmed/19036411]
Google Scholar
Pesava P, Aksu R, Toprak S, Horvath H, Seidl S: Dry deposition of particles to building surfaces and soiling. Sci Total Environ. 1999, 235 (1-3): 25-35. 10.1016/S0048-9697(99)00187-4. [http://linkinghub.elsevier.com/retrieve/pii/S0048969799001874]
Google Scholar
Ionescu A, Lefèvre RA, Chabas A, Lombardo T, Ausset P, Candau Y, Rosseman L: Modeling of soiling based on silica-soda-lime glass exposure at six European sites. Sci Total Environ. 2006, 369 (1-3): 246-255. 10.1016/j.scitotenv.2006.04.009. [http://www.ncbi.nlm.nih.gov/pubmed/16777189]
Google Scholar
Lombardo T, Ionescu A, Chabas A, Lefèvre RA, Ausset P, Candau Y: Dose-response function for the soiling of silica-soda-lime glass due to dry deposition. Sci Total Environ. 2010, 408 (4): 976-984. 10.1016/j.scitotenv.2009.10.040. [http://www.ncbi.nlm.nih.gov/pubmed/19900698]
Google Scholar
Lombardo T, Ionescu A, Lefèvre RA, Chabas A, Ausset P, Cachier H: Soiling of silica-soda-lime float glass in urban environment: measurements and modelling. Atmos Environ. 2005, 39 (6): 989-997. 10.1016/j.atmosenv.2004.10.030. [http://www.sciencedirect.com/science/article/pii/S1352231004010088]
Google Scholar
Tidblad J, Kucera V, Schreiner M, Melcher M, Kreislova K, Watt J, Hamilton R: Multi Assess report (Model for multi-pollutant impact andd assessment of threshold levels for cultural heritage). Tech. rep., Swedish Corrosion Institute (SCI), Stockholm, Sweden 2005, [www.corr-institute.se/MULTI-ASSESS]
Timmer H, Zeller M: Particle deposition near ceiling induction outlets. Int J Refrigeration. 2004, 27 (3): 248-254. 10.1016/j.ijrefrig.2003.10.003. [http://www.sciencedirect.com/science/article/pii/S014070070300166X]
Google Scholar
Camuffo D, Pagan E, Bernardi A, Becherini F: The impact of heating, lighting and people in re-using historical buildings: a case study. J Cultural Heritage. 2004, 5 (4): 409-416. 10.1016/j.culher.2004.01.005. [http://www.sciencedirect.com/science/article/pii/S1296207404000822]
Google Scholar
Zhang H, Shi M, Shen W, Li Z, Zhang B, Liu R, Zhang R: Damage or protection? The role of smoked crust on sandstones from Yungang Grottoes. J Archaeological Sci. 2013, 40 (2): 935-942. 10.1016/j.jas.2012.09.031. [http://www.sciencedirect.com/science/article/pii/S0305440312004335]
Google Scholar
Vigil F: Black stains in houses: soot, dust, or ghosts?. Home Energy Mag Online. 1988, [http://www.homeenergy.org/show/article/id/1360]
Google Scholar
Morawska L, Salthammer T: Indoor Environment. 2006, New York: Wiley, [http://books.google.co.uk/books?id=ogTHwrb6e60C]
Google Scholar
Salthammer T, Uhde E: Organic Indoor Air Pollutants. 2009, New York: Wiley, [http://books.google.co.uk/books?id=bo7icxgj-DkC]
Google Scholar
Fittschen UEA, Santen M, Rehmers A, Durukan I, Wesselmann M: Indoor aerosol determination with respect to a soiling phenomenon in private residences. Environ Sci Technol. 2013, 47: 608-615. 10.1021/es303281k. [http://pubs.acs.org/doi/abs/10.1021/es303281k]
Google Scholar
Salthammer T, Fauck C, Schripp T, Meinlschmidt P, Willenborg S, Moriske HJ: Effect of particle concentration and semi-volatile organic compounds on the phenomenon of “black magic dust” in dwellings. Build Environ. 2011, 46 (10): 1880-1890. 10.1016/j.buildenv.2011.03.008. [http://www.sciencedirect.com/science/article/pii/S0360132311000795]
Google Scholar
Zai S, Zhen H, Jia-song W: Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci. 2006, 37 (11): 1484-1496. 10.1016/j.jaerosci.2006.05.001. [http://www.sciencedirect.com/science/article/pii/S0021850206000899]
Google Scholar
Bond TC, Bergstrom RW: Light absorption by carbonaceous articles: an investigative review. Aerosol Sci Technol. 2006, 40: 27-67. 10.1080/02786820500421521. [http://www.tandfonline.com/doi/abs/10.1080/02786820500421521]
Google Scholar
Zhang Q, Rubini P: Modelling of light extinction by soot particles. Fire Safety J. 2011, 46 (3): 96-103. 10.1016/j.firesaf.2010.11.002. [http://www.sciencedirect.com/science/article/pii/S0379711210000913]
Google Scholar
Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ: Color changes in architectural limestones from pollution and cleaning. Color Res & Appl. 2007, 32 (4): 320-331. 10.1002/col.20322. [http://doi.wiley.com/10.1002/col.20322]
Google Scholar
Grossi CM, Brimblecombe P: Aesthetics of simulated soiling patterns on architecture. Environ Sci Technol. 2004, 38 (14): 3971-3976. 10.1021/es0353762. [http://www.ncbi.nlm.nih.gov/pubmed/15298208]
Google Scholar
Tétreault J: Airborne Pollutants in Museums, Galleries and Archives: Risk Assessment, Control Strategies and Preservation Management. 2003, Ottawa: Canadian Conservation Institute, [http://books.google.co.uk/books?id=zB18QgAACAAJ]
Google Scholar
Druzik JR, Cass GR: A new look at soiling of contemporary paintings by soot in art museums. The Indoor Air Quality Meeting for Museums Conference Report. 2000, Oxford: Oxford Brookes University, 22-27.
Google Scholar
Rodriguez-Navarro C, Sebastian E: Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ. 1996, 187 (2): 79-91. 10.1016/0048-9697(96)05124-8. [http://linkinghub.elsevier.com/retrieve/pii/0048969796051248]
Google Scholar
Simão J, Ruiz-Agudo E, Rodriguez-Navarro C: Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ. 2006, 40 (36): 6905-6917. 10.1016/j.atmosenv.2006.06.016. [http://linkinghub.elsevier.com/retrieve/pii/S1352231006006704]
Google Scholar
Strandberg H: Reactions of copper patina compounds—I. Influence of some air pollutants. Atmos Environ. 1998, 32 (20): 3511-3520. 10.1016/S1352-2310(98)00057-0. [http://www.sciencedirect.com/science/article/pii/S1352231098000570]
Google Scholar
Jacobson M: Atmospheric Pollution: History, Science, and Regulation. 2002, Cambridge: Cambridge University Press, [http://books.google.co.uk/books?id=NN5S0∖_3dEvkC]
Google Scholar
Popovicheva OB, Persiantseva NM, Kireeva ED, Khokhlova TD, Shonija NK: Quantification of the hygroscopic effect of soot aging in the atmosphere: laboratory simulations. J Phys Chem A. 2011, 115 (3): 298-306. 10.1021/jp109238x. [http://pubs.acs.org/doi/abs/10.1021/jp109238x]
Google Scholar
Perez-Alonso M, Castro K, Martinez-Arkarazo I, Angulo M, Olazabal MA, Madariaga JM, Pérez-Alonso M: Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanalytical Chem. 2004, 379: 42-50. 10.1007/s00216-004-2496-2. [http://link.springer.com/article/10.1007∖%2Fs00216-004-2496-2], http://www.ncbi.nlm.nih.gov/pubmed/14758463
Google Scholar
Duran A, Perez-Rodriguez J, de Haro MJ, Herrera L, Justo A: Degradation of gold and false golds used as gildings in the cultural heritage of Andalusia, Spain. J Cult Heritage. 2008, 9 (2): 184-188. 10.1016/j.culher.2007.10.005. [http://www.sciencedirect.com/science/article/pii/S1296207408000253]
Google Scholar
Askey A, Lyon S, Thompson G, Johnson J: The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild steel. Corrosion Sci. 1993, 34 (7): 1055-1081. 10.1016/0010-938X(93)90289-S. [http://www.sciencedirect.com/science/article/pii/0010938X9390289S]
Google Scholar
Montanaro L: Durability of ceramic filters in the presence of some diesel soot oxidation additives. Ceramics Int. 1999, 25: 437-445. 10.1016/S0272-8842(98)00051-0. [http://www.sciencedirect.com/science/article/pii/S0272884298000510]
Google Scholar
Brimblecombe P, Thickett D, Yoon YH: The cementation of coarse dust to indoor surfaces. J Cult Heritage. 2009, 10 (3): 410-414. 10.1016/j.culher.2008.12.003. [http://linkinghub.elsevier.com/retrieve/pii/S1296207409000557]
Google Scholar
The National Trust Manual of Housekeeping: the Care of Collections in Historic Houses Open to the Public. 2006, Henry Ford Estate collection, National Trust, Amsterdam: Elsevier, [http://books.google.co.uk/books?id=JKFVwVlZbWMC]
Spafford-Ricci S, Graham F: The fire at the Royal Saskatchewan Museum, Part 2: removal of soot from artifacts and recovery of the building. J Am Inst Conserv. 2000, 39: 37-56. 10.2307/3179962. [http://www.jstor.org/stable/3179962]
Google Scholar
Strlič M, Kolar J, Šelih VS, Marinček M: Surface modification during Nd:YAG (1064 nm) pulsed laser cleaning of organic fibrous materials. Appl Surface Sci. 2003, 207 (1–4): 236-245. [http://www.sciencedirect.com/science/article/pii/S0169433202013715]
Google Scholar
Strlič M, Šelih VS, Kolar J, Kočar D, Pihlar B, Ostrowski R, Marczak J, Strzelec M, Marinček M, Vuorinen T, Johansson LS: Optimisation and on-line acoustic monitoring of laser cleaning of soiled paper. Appl Phys A: Mater Sci Process. 2005, 81 (5): 943-951. 10.1007/s00339-005-3268-3. [http://dx.doi.org/10.1007/s00339-005-3268-3]
Google Scholar
Toniolo L, Zerbi C, Bugini R: Black layers on historical architecture. Environ Sci Pollut Res. 2009, 16: 218-226. 10.1007/s11356-008-0046-8. [http://dx.doi.org/10.1007/s11356-008-0046-8]
Google Scholar