Faure G. Principles of isotope geology. New York: J. Wiley & Sons; 1977.
Google Scholar
Campbell J. Rutherford—a brief biography. Canterbury; 2001.
Boltwood B. The ultimate disintegration product of the radio-active elements. Am J Sci. 1907;24:77–88.
Google Scholar
Arnold JR, Libby WF. Age determinations by radiocarbon content: checks with samples of known age. Science. 1949;110:678–80.
Article
CAS
Google Scholar
Meschel SV. Chemistry and archaeology: a creative bond. Chicago: University of Chicago, Dept. of Chemistry; 1979.
Google Scholar
Wintle AG. Archaeologically-relevant dating techniques for the next century: small, hot and identified by acronyms. J Archaeol Sci. 1996;23:123–38.
Article
Google Scholar
Pollard AM, Batt CM, Stern B, Young SMM. Analytical chemistry in archaeology. Cambridge: Cambridge University Press; 2007.
Book
Google Scholar
Artioli G, editor. Scientific methods and cultural heritage. Oxford: Oxford University Press; 2010.
Google Scholar
Hoefs J. Stable isotope geochemistry. 6th ed. Berlin: Springer; 2008.
Google Scholar
Park R, Epstein S. Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta. 1960;21:110–26.
Article
CAS
Google Scholar
Farquhar GD, Ehlinger JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol. 1989;40:503–37.
Article
CAS
Google Scholar
Macko SA, Fogel ML. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol Isot Geosci Sect. 1987;65:79–92.
Article
CAS
Google Scholar
Chambers LA, Trudinger PA, Smith JW, Burns MS. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can J Microbiol. 1975;21:1602–7.
Article
CAS
Google Scholar
DeNiro MJ, Epstein S. Mechanisms of carbon isotope fractionation associated with lipid synthesis. Science. 1977;197:261–3.
Article
CAS
Google Scholar
O’Leary MH. Carbon isotope fractionation in plants. Phytochemistry. 1981;20:553–67.
Article
Google Scholar
Hoch AR, Lever DA, Shaw G. A review of literature in support of experimental and modelling of Carbon-14 behaviour in the biosphere. Nottingham: University of Nottingham Publ. AMEC/Nott/004041/001.
Teng FZ, Watkins JM, Dauphas N, editors. Non-traditional stable isotopes. Reviews in mineralogy and geochemistry, vol. 82; 2017.
McDougall D. Nature’s clock—how scientists measure the age of almost everything Radiocarbon Dating. Oakland: University of California Press; 2008.
Google Scholar
De Laeter J, Kurz MD. Alfred Nier and the sector field mass spectrometer. J Mass Spectrom. 2006;41:847–54.
Article
CAS
Google Scholar
Brenna JT, Corso TN, Tobias HJ, Caimi RJ. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectr. Rev. 1997;16:227–58.
Article
CAS
Google Scholar
Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectometry. J. Chromatogr. 1999;A842:351–71.
Article
Google Scholar
De Groot A, editor. Handbook of stable isotope analytical techniques, vol. 1. New York: Elsevier; 2004.
Google Scholar
Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134:213–22.
Article
CAS
Google Scholar
Tykot RH. Stable isotope and diet—you are what you eat. In: Proceedings international school of physics enrico fermi, CLIV. Amsterdam: IOS Press; 2004.
Povince PP, Sanchez-Caboze JA. In: International conference on isotopes and environmental studies. VPDB conference Vienna 1993. Amsterdam: Elsevier.
Tauber H. 13C evidence for dietary habits of prehistoric man in Denmark. Nature. 1981;292:332–3.
Article
CAS
Google Scholar
Lidén K, Nelson ED. Stable carbon isotopes as dietary indicator in the Baltic area. Fornvännen. 1994;89:13–21.
Google Scholar
Mottram HR, Dudd SN, Lawrence GJ, Stott AW, Evershed RP. New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. J Chromatogr A. 1999;833:209–21.
Article
CAS
Google Scholar
Hedges REM, Reynard LM. Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci. 2007;34:1240–51.
Article
Google Scholar
Buchardt B, Bunch V, Helin P. Fingernails and diet: stable isotope signatures of a marine community from Uummannaq, North Greenland. Chem Geol. 2007;244:316–29.
Article
CAS
Google Scholar
Nielsen-Marsh CM, Smith CI, Jans M, Collins MJ, Nord AG, Kars H. Bone diagenesis in the European Holocene II: taphonomic and environmental considerations and the long-term preservation of archaeological bone. J Archaeol Sci. 2006;34:1523–31.
Article
Google Scholar
Richards MP, Fuller BT, Sponheimer M, Robinson T, Ayliffe L. Sulphur isotopes in palaeodietary studies—a review and results from a controlled feeding experiment. Int J Osteoarchaeol. 2003;13:37–45.
Article
Google Scholar
Nehlich O, Borić D, Stefanivić S, Richards MP. Sulphur isotope evidence for freshwater fish consumption: a case study from the Danube Gorges, SE Europe. J Archaeol Sci. 2010;37:1131–9.
Article
Google Scholar
Privat KL, O’Connell T, Hedges REM. The distinction between freshwater and terrestrial-based diets: methodological concerns and archaeological applications of sulphur stable isotope analysis. J Archaeol Sci. 2007;34:1197–204.
Article
Google Scholar
Reynard LM, Hedges REM. Stable hydrogen isotopes of bone collagen in palaeo-dietary and palaeo-environmental reconstruction. J Archaeol Sci. 2008;35:1934–42.
Article
Google Scholar
Yang H, Leng Q. Molecular hydrogen isotope analysis of living and fossil plants—metasequoia as an example. Prog Nat Sci. 2009;19:901–12.
Article
CAS
Google Scholar
Sharp ZD, Atudorei V, Panarello HO, Fernandez J, Douthitt C. Hydrogen isotope systematics of hair: archaeological and forensic applications. J Archaeol Sci. 2003;30:1709–16.
Article
Google Scholar
O’Grady SP, Valenzuela LO, Remien CH, Enright LE, Jorgensen MJ, Kaplan JR, Wagner JD, Cerling TE, Ehlinger JR. Hydrogen and oxygen ratios in body, water and hair—modelling isotope dynamics in nonhuman primates. Am J Primatol. 2012;74:651–60.
Article
CAS
Google Scholar
Bol R, Pflieger C. Stable isotope (C, N and S) analysis of hair in modern humans and their domestic animals. Rapid Comm. Mass Spectrometry. 2002;16:2195–200.
Article
CAS
Google Scholar
Hobson KA. Tracing origin and migration of wildlife using stable isotopes: a review. Oecologia. 1999;20:314–26.
Article
Google Scholar
Schwartz HP, Schoeninger HP. Stable isotope analyses in human nutritional ecology. Am J Phys Anthropol. 1991;34:283–321.
Article
Google Scholar
Wilkinson DJ. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom Rev. 2018;37:57–80.
Article
CAS
Google Scholar
White CD, Schwarcz HP. Ancient Maya diet as inferred from isotopic and elemental analysis of human bone. J Archaeol Sci. 1989;16:451–74.
Article
Google Scholar
Sealy J, Johnson H, Richards M, Nehlich O. Comparison of two methods of extracting collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci. 2014;47:64–9.
Article
CAS
Google Scholar
Iacumin P, Bocherens H, Chaix L, Marioth A. Stable carbon and nitrogen isotopes as dietary indicators of ancient Nubian populations (Northern Sudan). J Archaeol Sci. 1998;25:293–301.
Article
Google Scholar
von Holstein IC, Makarewicz CA. Geographical variability in northern European sheep wool isotopic composition (C, N, H values). Rapid Commun Mass Spectr. 2016;30:1423–34.
Article
CAS
Google Scholar
Naumann E, Krzewinska M, Götherström A, Eriksson G. Slaves as burial gifts in Viking Age Norway? Evidence from stable isotope and ancient DNA analysis. J Archaeol Sci. 2014;41:533–40.
Article
CAS
Google Scholar
Lamb AL, Evans JE, Buckley R, Appleby J. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J Archaeol Sci. 2014;50:559–65.
Article
CAS
Google Scholar
Craig H, Craig V. Greek marbles—determination of provenance by isotopic analysis. Science. 1972;76:401–3.
Article
Google Scholar
Pearl Z, Mogaritz M. Stable isotopes and the Roman marble trade—evidence from Scythopolis and Caesarea, Israel. In: Taylor HP, O’Neil JR, Kaplan IR, editors. Stable isotope geochemistry—geological society, Spec. Ed; 1991, No. 3.
Herz N. Provenance determination of Neolithic to classical Mediterranean marbles by stable isotopes. Archaeometry. 1992;34:186–94.
Article
Google Scholar
Maniatis Y, Tambakopoulos D, Dotsika E, Stafanidou-Tiveriou Th. Marble provenance investigation of Roman sarcophagi from Thessaloniki. Archaeometry. 2009;52:45–58.
Article
CAS
Google Scholar
Tambakopoulos D, Maniatis Y. The marble of the Cyclades and its use in the Early Bronze Age. In: Marthari M, Renfrew C, Boyd MJ, editors. Early cycladic sculpture in context. Oxbow: Oxford and Philadelphia; 2017. p. 468–82.
Google Scholar
Faure G. Principles and applications of isotope geology. 2nd ed. Upper Saddle River: Prentice Hall; 1998.
Google Scholar
Faure G, Mensing TM. Isotopes: principles and applications. 3rd ed. Hoboken: John Wiley & Sons Inc; 2005.
Google Scholar
Donner J, Nord AG. Carbon and oxygen stable isotope composition of Mytilus Edulis and Modiolus Modiolus shells from Holocene-raised beaches at the outer coast of the Varanger peninsula, north Norway. J Palaeogeogr Palaeoclim Palaeoecol. 1986;56:35–50.
Article
CAS
Google Scholar
Dansgaard W, Johnson SJ, Möller J, Langway CC. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science. 1969;166:377–80.
Article
CAS
Google Scholar
Clayton RN, Mayeda TK. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta. 1963;27:43–52.
Article
CAS
Google Scholar
Cheilletz A, Branquet Y, Giar D, Martin-Izard A, Alexandrov P, Piat DH. Oxygen isotope systematics of emerald: relevance for its origin and geological significance. Miner Deposita. 1998;33:513–9.
Article
Google Scholar
Longinelli A, Bartelloni M. Atmospheric pollution in Venice, Italy, as indicated by isotopic analyse. Water Air Soil Pollut. 1978;10:335–41.
Article
CAS
Google Scholar
Krouse HR. Stable isotopes: Natural and anthropogenic sulfur in the environment. Scientific Committee on Problems of the Environment (SCOPE). Paris: United Nations Development Programme; 1983.
Google Scholar
Bužek F, Srámek J. Sulfur isotopes in the study of stone monument conservation. Stud Conserv. 1985;30:171–8.
Google Scholar
Pye K, Schiavon N. The effects of air pollution on the built environment. Nature. 1989;342:663–4.
Article
CAS
Google Scholar
Nord AG. Analysis of sandstone at the Royal Palace, Stockholm. Geologiska Föreningens i Stockholm Förhandlingar. 1995;117:43–8.
CAS
Google Scholar
Nord AG, Tronner K, Boyce A. Atmospheric bronze and copper corrosion as environmental indicator. A study based on chemical and sulphur isotope data. Water Air Soil Pollut. 2001;127:193–204.
Article
CAS
Google Scholar
Stos-Gale ZA, Gale NH. Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). J Archaeol Anthropol Sci. 2009;1:195–213.
Article
Google Scholar
Blichert-Toft J, Delile H, Lee CT, Stos-Gale Z, Billström K, Andersen TH, Huhma H, Albarède F. Large-scale tectonic cycles in Europe revealed by distinct Pb isotope studies. AGU Publ Geochem Geophys Geosyst Res Article. 2016. https://doi.org/10.1002/2016GC006524.
Article
Google Scholar
Henderson J, Evans JA, Sloan HJ, Leng J, Doherty C. The use of oxygen, strontium and lead isotopes to provenance ancient glasses in the Middle East. J Archaeol Sci. 2005;32:665–73.
Article
Google Scholar
Henderson J, Evans J, Nikita K. Isotopic evidence for the primary production, provenance and trade of late bronze age glass in the Mediterranian. Mediterr Archaeol Archaeom. 2010;10:1–24.
Google Scholar
Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen M. Strontium isotopes in the investigation of early Islamic glass production: byzantine and Early Islamic glass from the near East. Archaeometry. 2003;45:19–32.
Article
CAS
Google Scholar
Degryse P, Schneider J. Pliny the Elder and Sr-Nd isotopes: tracing the provenance of raw materials for Roman glass production. J Archaeol Sci. 2008;35:1993–2000.
Article
Google Scholar
Gallo F, Silvestri A, Degrysa P, Ganio M, Longinelli A, Molin G. Roman and Late-Roman glass from north-eastern Italy: the isotopic perspective to provenance its raw materials. J Archaeol Sci. 2015;62:55–65.
Article
CAS
Google Scholar
Knaf ACS, Koornneef JM, Davies GR. Non-invasive portable laser ablation sampling of art and archaeological materials with subsequent Sr-Nd isotope analysis by TIMS using 1013 Ω amplifiers. J Anal At Spectrum. 2017;32:2210–6.
Article
CAS
Google Scholar
Brems D, Degryse P. Trace element analysis in provenancing Roman glass-making. Archaeometry. 2013;56:116–36.
Article
CAS
Google Scholar
Ma H, Henderson J, Evans J. The exploration of Sr isotopic analysis applied to Chinese glazes: part one. J Archaeol Sci. 2014;50:551–8.
Article
CAS
Google Scholar
Brill RH, Felker-Dennis CC, Shirahata H, Joel EC. Lead isotope analysis of some Chinese and central Asian pigments. Los Angeles: The Getty Conservation Institute; 1997. p. 369–78.
Google Scholar
Fortunato G, Ritter A, Fabian D. Old Masters’ lead white pigments: investigations of paintings from the 16th to 17th century using high precision lead isotope abundance ratios. Analyst. 2005;130:898–906.
Article
CAS
Google Scholar
Fleming JS. Authenticity in art—the scientific detection of forgery. London: Institute of Physics; 1975.
Google Scholar
Nord AG, Billström K, Tronner K, Björling Olausson K. Lead isotope data for provenancing mediaeval pigments in Swedish mural paintings. J Cult Herit. 2015;16:856–61.
Article
Google Scholar
Nord AG, Tronner K, Billström K, Strandberg Zerpe B. Analysis of mediaeval Swedish paintings influenced by Russian-Byzantine art. J Cult Herit. 2017;23:162–9.
Article
Google Scholar
Nord AG, Tronner K, Billström K, Gustafsson Belzacq M. Pigment traces on mediaeval stornework in Gotland’s churches—examination of seven 12th century baptismal fonts and a limestone pew. Fornvännen. 2016;111:17–26.
Google Scholar
Ling J, Hjärthner-Holdar E, Grandin L, Billström K, Persson PO. Moving metals or indigenous mining? Provenancing Scandinavian bronze age artefacts by lead isotopes and trace elements. J Archaeol Sci. 2013;40:291–304.
Article
CAS
Google Scholar
Ling J, Stos-Gale Z, Grandin L, Billström K, Hjärthner-Holdar E, Persson PO. Moving metals II: provenancing Scandinavian bronze Age artefacts by lead isotope and elemental analyses. J Archaeol Sci. 2014;41:106–32.
Article
CAS
Google Scholar
Rehren T, Pernicka E. Coins, artefacts and isotopes–archaeometallurgy and archaeometry. Archaeometry. 2008;50:232–48.
Article
CAS
Google Scholar
Niederschlag E, Perncika E, Seifert T, Bartelheim M. The determination of lead isotope ratios by multiple collector ICP-MS: a case study of Early Bronze age artefacts and their possible relation with ore deposits of Germany and Bohemia. Archaeometry. 2003;45:61–100.
Article
CAS
Google Scholar
Molofsky LJ, Killick D, Ducea MN, Macovei M, Chesley JT, Ruiz J, Thibodeau A, Popescu GC. A novel approach to lead isotope provenance studies of tin and bronze applications to South African and Romanian artifacts. J Archaeol Sci. 2014;50:440–50.
Article
CAS
Google Scholar
Pointing M, Evans JA, Pashley V. Fingerprinting of Roman mints, using laser ablation MC-ICP-MS lead isotope analysis. Archaeometry. 2003;45:591–7.
Article
Google Scholar
Boni M, Dima G, Frei R, Villa IM. Lead isotope evidence for a mixed provenance for Roman water pipes from Pompeii. Archaeometry. 2000;42:201–8.
Article
CAS
Google Scholar
van Duivenvoorde W. Batavia shipwreck: study of the Batavia ship’s hull remains. Dissertation, Western Australia Museum, Perth; 2008.
Johansson Å. Isotopic analyses of the Karl XII brass bullet. The Varberg Museum Yearbook 1992. Varberg; 1992. (In Swedish with English summary).
Schweissing MM, Grupe G. Local or non-local? A research of strontium isotope ratios of teeth and bones on skeletal remains. Anthroposophische Anzeigen. 2000;58:99–103.
CAS
Google Scholar
Hodell DA, Quinn RL, Brenner M, Kamenov G. Spatial variation of strontium isotopes in the Maya region: a tool for tracking ancient human migration. J Archaeol Sci. 2004;31:585–601.
Article
Google Scholar
Bentley RA. Strontium isotopes from the Earth to the archaeological skeleton—a review. J Archaeol Method Theory. 2006;13:135–87.
Article
Google Scholar
Åberg G, Fosse G, Stray H. Man, nutrition and mobility: a comparison of teeth and bone from the Medieval era and the present from Pb and Sr isotopes. Sci Total Environ. 1998;224:109–19.
Article
Google Scholar
Fowler B. Iceman—uncovering the life and times of a Prehistoric man found in an Alpine glacier. New York: Random House; 2000.
Google Scholar
Der Spindler K. Mann im Eis. München: Neue sensationelle Erkenntnisse über die Mumie der Ötztaler Alpen. Goldmann Verlag; 2000.
Google Scholar
Lindström J. The Bronze Age murder. Stockholm: Norstedt Publ; 2009 (in Swedish).
Google Scholar
Ericsson G, Papmehl-Dufay L, Lidén K. Cultural interaction and change: a multi-isotopic approach to the Neolithization in coastal areas. World Archaeol. 2013. https://doi.org/10.1080/00438243.2013.820651.
Article
Google Scholar
Fjellström M. Isotope analyses of the so-called Birka girl. Archaeological Research Laboratory, University of Stockholm, Report 208; 2012.
Albarède E, Beard B. Analytical methods for non-traditional isotopes. Rev Miner Geochem. 2004;55:113–52.
Article
Google Scholar
Young ED, Manning CT, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem Geol. 2015;395:176–95.
Article
CAS
Google Scholar
Devulder V, Vanhaecke F, Shortland A, Mattingly D, Jackson C, Degryse P. Boron isotope composition as a provenance indicator for the flux raw material in Roman natron glass. J Archaeol Sci. 2014;46:107–13.
Article
CAS
Google Scholar
Martin JE, Vance D, Balter V. Magnesium stable isotope ecology using mammal tooth enamel. In: Proceedings of the National Academy of Sciences of the USA. Ecology, Earth, Atmospheric, and Planetary Sciences. 2015; 112:430–435.
Li YH, Wan DF, Jiang SY. Silicon isotope study on the Meishucum Precambrium-Cambrium boundary section, Yunnan. Geol Rev. 1995;41:179–87.
Google Scholar
Leng MJ, Swann GEA, Hodson MJ, Tyler JJ, Patwardhan SV, Sloane HJ. The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. Silicon. 2009;1:65–77.
Article
CAS
Google Scholar
Reynard LM, Henderson GM, Hedges REM. Calcium isotopes in archaeological bones and their relationship to dairy consumption. J Archaeol Sci. 2010;38:657–64.
Article
Google Scholar
Li XF, Lin Y. Equilibrium Se isotope fractionation parameters: a first-principle study. Earth Planet Sci. 2011;304:113–20.
Article
CAS
Google Scholar
Gale AP, Woodhead ZA, Walder A, Bowen I. Natural variations detected in the isotopic composition of copper—possible applications to archaeology and geochemistry. Int J Mass Spectrom. 1999;184:1–9.
Article
CAS
Google Scholar
Jaouen K, Balter V, Herrscher E, Lamboux A, Telouk P, Albarède F. Fe and Cu stable isotopes in archaeological human bones and their relationship to sex. Am J Anthropol. 2012;148:334–40.
Article
Google Scholar
Powell W, Mathur R, Bankoff HA, Mason A, Bulatovic A, Filipovic V, Godfrey L. Digging deeper: insights into metallurgical transitions in European prehistory through copper isotopes. J Archaeol Sci. 2017;88:37–46.
Article
CAS
Google Scholar
Powell W, Mathur R, Bankoff AH, John J, Chvojka O, Tisucká M, Bulatovic A, Filipovic V. Copper isotopes as a means of determining regional metallurgical practices in European prehistory: a reply to Jansen (2018). J Archaeol Sci. 2018;89:1–6.
Article
Google Scholar
Lazarov M, Weyer S, Pacevski A, Horn I. Cu isotope fractionation in primary and secondary copper minerals from the Coka Marin and Bor mining areas (east Serbia). Miner Mag. 2011;75:1279–85.
Google Scholar
Baron S. Iron isotopes as a potential tool for ancient iron metal tracing. J Archaeol Sci. 2016;76:9–20.
Article
CAS
Google Scholar
Pernicka E, Begemann F, Schmidt-Strecker S, Günther AW. Eneolithic and Early Bronze age copper artefacts from the Balkans and their relation to Serbian copper ores. Praehistorische Zeitschrift. 1993;68:1–54.
Article
Google Scholar
Jaouen K, Herrscher E, Balter V. Copper and zinc isotope ratios in human bone and enamel. Am J Phys Anthropol. 2017;162:491–500.
Article
Google Scholar
Jaouen K, Szpak P, Richards MP. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals. PLOS 2016, Paper 11(3), PMC 4806842.
Haustein M, Gillis C, Pernicka E. Tin isotopy—a new method for solving old questions. Archaeometry. 2010;52:816–32.
Article
CAS
Google Scholar
Brügmann G, Berger D, Pernicka E. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS. Geostand Geoanal Res. 2017;41:437–48.
Article
CAS
Google Scholar
Nickel D, Haustein H, Lampke T, Pernicka E. Identification of forgeries by measuring tin isotopes in corroded bronze. Archaeometry. 2012;54:167–74.
Article
CAS
Google Scholar
Balliana E, Aramendia M, Resano M, Barbante C, Vanhaecke F. Copper and tin isotope analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodlogy. Anal Bioanal Chem. 2013;405:2973–86.
Article
CAS
Google Scholar
Mason AH, Powell W, Bankoff A, Ruiz J. The isotope characterization of bronze artifacts in central Balkans. J Archaeol Sci. 2016;69:110–7.
Article
CAS
Google Scholar
Spangenberg JE, Lavrič JV, Meisser N, Serneels V. Sulfur isotope analysis of cinnabar from Roman wall paintings by IRMS—tracking the origin of archaeological red pigments and their authenticity. Rapid Comm Mass Spectr. 2010;24:2812–6.
Article
CAS
Google Scholar
Desaulty AM, Telouk P, Albalat E, Albarède F. Isotopic Ag-Cu-Pb record of silver circulating through 16th to 18th century Spain. In: Proceedings of the national academie of sciences of the USA. 2011; 108:9002–9007.
Münich KO, Östlund KG, de Vries K. Carbon-14 activity during the past 5000 years. Nature. 1958;182:1432–5.
Article
Google Scholar
Olson EA, Broecker WS. Lamont radiocarbon measurements VIII. Radiocarbon. 1961;3:141–8.
Article
Google Scholar
Olsson IU. Radiocarbon dating history: early days, questions, and problems. Radiocarbon. 2009;51:1–43.
Article
CAS
Google Scholar
Taylor RE. Radiocarbon dating—an archaeological perspective. 2nd ed. London: Taylor & Francis; 2014.
Google Scholar
Clark FM, Renfrew C. Tree-ring calibration of radiocarbon data and the chronology of ancient Egypt. Nature. 1973;249:266–70.
Article
Google Scholar
Keeling CD. The Suess effect: 13Carbon/14Carbon interrelations. Environ Int. 1979;2:229–300.
Article
CAS
Google Scholar
Tans PP, de Jong AFM, Mook WG. Natural 14C variation and the Suess effect. Nature. 1979;280:826–8.
Article
CAS
Google Scholar
Alfimov V. Accelerator mass spectrometry of 36Cl and 129I. Dissertation. Uppsala: University of Uppsala; 2005.
Melcher L, Zimmerman DW. Tritium-helium dating in the Sargasso Sea. J Archaeol Sci. 1996;23:123–38.
Article
Google Scholar
Rasbury ET, Cole JM. Directly dating geologic events: U-Pb dating of carbonates. Rev Geophys. 2009;47:3.
Article
Google Scholar
Parrish R, Rasbury T. Direct in situ dating of carbonates by LA-ICM-(MC)-MS and its applications to chronostratigraphy. Search and Discovery 2014, Article #41269.
Balter V, Blichert-Toft J, Braga J, Telouk P, Thackerey F, Albarède F. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa. Earth Planet Sci Lett. 2008;267:236–46.
Article
CAS
Google Scholar
Walter RC. Age of Lucy and the First Family: single-crystal 40Ar/39Ar dating of the Denen Dora and lower Kada Hadar members of the Hadar formation, Ethiopia. Geology. 1994;22:6–10.
Article
CAS
Google Scholar
Renne PR, Sharp WD, Deino AL, Orsi G, Civeta L. 40Ar/39Ar dating into the historical realm: calibration against pliny the younger. Science. 1997;277:1279–80.
Article
CAS
Google Scholar
Fleische RL, Price PB, Walker RM. Nuclear tracks in solids. Oakland: University of California, Berkely Press; 1975.
Google Scholar
Naeser CW. Fission-track dating and geologic annealing of fission tracks. In: Jäger E, Hunziker JC, editors. Lectures in isotope geology. Berlin: Springer; 1979. p. 154.
Chapter
Google Scholar
Jolivet M, Lebatard AE, Reyss JL, Brunet M. Can fossil bones and teeth be dated using fission track analysis? Chem Geol. 2008;247:81–99.
Article
CAS
Google Scholar
Meacham W. Radiocarbon measurement and age of the Turin Shroud: possibilities and uncertainties. In: Proceedings of the symposium “Turin shroud—image of Christ?”. Hongkong, March 1986.
Nelson BK, DeNiro MJ, Schoeninger MJ, DePaolo DJ, Hare PE. Effects if diagenesis on strintium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim Cosmochim Acta. 1986;50:1941–9.
Article
CAS
Google Scholar
Kohn MJ, Schoeninger MJ, Barker WW. Altered states: effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta. 1999;63:2737–47.
Article
CAS
Google Scholar
Lee-Thorpe J, Sponheimer M. Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol. 2003;22:208–16.
Article
Google Scholar
Snoek C, Lee-Thorpe J, Schulting R, de Jong J, Debouge W, Mattielli N. Calcined bone provides a reliable substrate for strontium isotope ratios shown by an enrichment experiment. Rapid Commun Mass Spectr. 2015;29:107–14.
Article
CAS
Google Scholar
Spiker EC, Hatcher PG. The effects of early diagenesis on the chemical and stable carbon isotope composition of wood. Geochim Cosmochim Acta. 1987;51:1385–91.
Article
CAS
Google Scholar
Ghisalberti EL, Godfrey IM. Application of Nuclear Magnetic Resonance spectroscopy to the analysis of organic archaeological materials. Stud Conserv. 1998;43:215–30.
CAS
Google Scholar
Friedman I, Trembour FW, Hughes RE. Obsidian hydration dating. In: Taylor RE, Aitken MJ, editors. Chronometric dating in archaeology. New York: Plenum Press; 1997. p. 297–322.
Chapter
Google Scholar