Grillo R, Rosa AH, Fraceto LF. Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere. 2015;119:608–19. https://doi.org/10.1016/j.chemosphere.2014.07.049.
Article
CAS
Google Scholar
Baglioni P, Carretti E, Chelazzi D. Nanomaterials in art conservation. Nat Nanotechnol. 2015. https://doi.org/10.1038/nnano.2015.38.
Article
Google Scholar
Munafò P, Goffredo GB, Quagliarini E. TiO2-based nanocoatings for preserving architectural stone surfaces: an overview. Constr Build Mater. 2015. https://doi.org/10.1016/j.conbuildmat.2015.02.083.
Article
Google Scholar
Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, et al. Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces. 2017. https://doi.org/10.1021/acsami.7b06130.
Article
Google Scholar
La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, et al. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeterior Biodegrad. 2014. https://doi.org/10.1016/j.ibiod.2014.10.002.
Article
Google Scholar
Benedix R, Dehn F, Quaas J, Orgass M. Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer. 2000;5:158–68.
Google Scholar
Parkin IP, Palgrave RG. Self-cleaning coatings. J Mater Chem. 2005;15:1689–95.
Article
CAS
Google Scholar
Giannantonio DJ, Kurth JC, Kurtis KE, Sobecky PA. Effects of concrete properties and nutrients on fungal colonization and fouling. Int Biodeterior Biodegrad. 2009. https://doi.org/10.1016/j.ibiod.2008.10.002.
Article
Google Scholar
Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, et al. Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeterior Biodegrad. 2010. https://doi.org/10.1016/j.ibiod.2010.04.006.
Article
Google Scholar
Baneriee S, Dionysiou DD, Pillai SC. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B. 2015;176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058.
Article
CAS
Google Scholar
Pino F, Fermo P, La Russa M, Ruffolo S, Comite V, Baghdachi J, et al. Advanced mortar coating for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environ Sci Pollut Res. 2016. https://doi.org/10.1007/s11356-016-7611-3.
Article
Google Scholar
Becerra J, Zaderenko AP, Sayagués MJ, Ortiz R, Ortiz P. Synergy achieved in silver-TiO2 nanocomposites for the inhibition of biofouling on limestone. Build Environ. 2018;141:80–90. https://doi.org/10.1016/j.buildenv.2018.05.020.
Article
Google Scholar
Graziani L, Quagliarini E, D’Orazio M. The role of roughness and porosity on the self-cleaning and anti-biofouling efficiency of TiO2–Cu and TiO2–Ag nanocoatings applied on fired bricks. Constr Build Mater. 2016;129:116–24.
Article
CAS
Google Scholar
Pinna D, Galeotti M, Perito B, Daly G, Salvadori B. In situ long-term monitoring of recolonization by fungi and lichens after innovative and traditional conservative treatments of archaeological stones in Fiesole (Italy). Int Biodeterior Biodegrad. 2018;132:49–58.
Article
CAS
Google Scholar
Pinna D, Salvadori B, Galeotti M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci Total Environ. 2012;423:132–41.
Article
CAS
Google Scholar
Banach M, Szczyglowska R, Pulit J, Bryk M. Building materials with antifungal efficacy enriched with silver nanoparticles. Chem Sci J. 2014;5:1. https://doi.org/10.4172/2150-3494.1000085.
Article
Google Scholar
Battista Goffredo G, Accoroni S, Totti C, Romagnoli T, Valentini L, Manufò P. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Build Environ. 2017;112:209–22.
Article
Google Scholar
Scarfato P, Avallone E, Incarnato L, Di Maio L. Development and evaluation of halloysite nanotube-based carrier for biocide activity in construction materials protection. Appl Clay Sci. 2016;132–133:336–42.
Article
CAS
Google Scholar
D’Orazio L, Grippo A. A water dispersed Titanium dioxide/poly(carbonate urethane) nanocomposite for protecting cultural heritage: preparation and properties. Prog Org Coat. 2015;79:1–7. https://doi.org/10.1016/j.porgcoat.2014.09.017.
Article
CAS
Google Scholar
Toniolo L, Gherardi F. The protection of marble surfaces: the challenge to develop suitable nanostructured treatments. In: Hosseini M, Karapanagiotis I, editors. Advanced materials for the conservation of stone. Cham: Springer; 2018. p. 57–78.
Chapter
Google Scholar
Ruffolo SA, Ricca M, Macchia A, La Russa MF. Antifouling coatings for underwater archaeological stone materials. Prog Org Coat. 2017. https://doi.org/10.1016/j.porgcoat.2016.12.004.
Article
Google Scholar
Ruffolo SA, Ricca M, De Leo F, La Russa MF. Medium-term in situ experiment using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int Biodeterior Biodegrad. 2017. https://doi.org/10.1016/j.ibiod.2017.05.016.
Article
Google Scholar
Goffredo GB, Terlizzi V, Munafò P. Multifunctional TiO2-based hybrid coatings on limestone: initial performances and durability over time. J Build Eng. 2017. https://doi.org/10.1016/j.jobe.2017.10.006.
Article
Google Scholar
Quagliarini E, Graziani L, Diso D, Licciulli A, D’Orazio M. Is nano-TiO2 alone an effective strategy for the maintenance of stones in cultural heritage? J Cult Herit. 2017. https://doi.org/10.1016/j.culher.2017.09.016.
Article
Google Scholar
Nowack B, Bornhöft N, Ding Y, Riediker M, Sánchez-Jiménez A, Sun T, et al. The flows of engineered nanomaterials from production, use, and disposal to the environment. In: Viana M, editor. Indoor and outdoor nanoparticles. The handbook of environmental chemistry, vol. 48. Cham: Springer; 2015. p. 209–31.
Chapter
Google Scholar
Ortega-Morales BO, Reyes-Estebanez M, Gaylarde CC, Camacho-Chab JC, Sanmartín P, Chan-Bacab M, Granados-Echegoyen C, Pereañez-Sacarias JE. Antimicrobial properties of nanomaterials used to control microbial colonization of stone substrata. In: Hosseini M, Karapanagiotis I, editors. Advanced materials for the conservation of stone, volume 1, chapter 13. Cham: Springer; 2018. p. 277–98.
Chapter
Google Scholar
Sierra-Fernandez A, Gomez-Villalba LS, Rabanal ME, Fort R. New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater Constr. 2017. https://doi.org/10.3989/mc.2017.07616.
Article
Google Scholar
Zornoza-Indart A, López-Arce P. Silica nanoparticles (SiO2): influence of relative humidity in stone consolidation. J Cult Herit. 2016. https://doi.org/10.1016/j.culher.2015.06.002.
Article
Google Scholar
Zarzuela R, Carbú M, Gil MLA, Cantoral JM, Mosquera MJ. CuO/SiO2 nanocomposites: a multifunctional coating for application on building stone. Mater Des. 2017. https://doi.org/10.1016/j.matdes.2016.11.009.
Article
Google Scholar
Ruggiero L, Crociani L, Zendri E, El Habra N, Guerriero P. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings. Appl Surf Sci. 2018;439:705–11. https://doi.org/10.1016/j.apsusc.2017.12.228.
Article
CAS
Google Scholar
Eduok S, Coulon F. Engineered nanoparticles in the environments: interactions with microbial systems and microbial activity. In: Cravo-Laureau C, Cagnon C, Lauga B, Duran R, editors. Microbial ecotoxicology, Cham. Springer: Cham; 2017. p. 63–107.
Chapter
Google Scholar
Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 2013;15:1692.
Article
Google Scholar
Hristozov D, Malsch I. Hazard and risk of engineered nanoparticles for the environment and human health. Sustainability. 2009;1(4):1161–94. https://doi.org/10.3390/su1041161.
Article
CAS
Google Scholar
Gladis G, Eggert A, Karsten U, Schumann R. Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling. 2010. https://doi.org/10.1080/08927010903278184.
Article
Google Scholar
Ferrari AM, Pini M, Neri P, Bondioli F. Nano-TiO2 coatings for limestone: which sustainability for cultural heritage? Coatings. 2015. https://doi.org/10.3390/coatings5030232.
Article
Google Scholar
González-Gálvez D, Janer G, Vilar G, Vílchez A, Vázquez-Campos S. The life cycle of engineered nanoparticles. In: Tran L, Bañares M, Rallo R, editors. Modelling the toxicity of nanoparticles. Advances in experimental medicine and biology, vol. 947. Cham: Springer; 2017. p. 41–69.
Chapter
Google Scholar
Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, et al. Release of silver nanoparticles from outdoor facades. Environ Pollut. 2010. https://doi.org/10.1016/j.envpol.2010.06.009.
Article
Google Scholar
Carmona ER, Inostroza-Blancheteau C, Obando V, Rubio L, Marcos R. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutat Res. 2015. https://doi.org/10.1016/j.mrgentox.2015.07.006.
Article
Google Scholar
Kegler P, Kegler HF, Gärdes A, Ferse SCA, Lukman M, Alfiansah YR, Hassenrück C, Kunzman A. Bacterial biofilm communities and coral larvae settlement at different levels of anthropogenic impact in the Spermonde Archipelago, Indonesia. Front Mar Sci. 2017. https://doi.org/10.3389/fmars.2017.00270.
Article
Google Scholar
Chen J, Tang Y, Li Y, Nie Y, Hou L, Li X, et al. Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere. 2014. https://doi.org/10.1016/j.chemosphere.2013.10.082.
Article
Google Scholar
Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, et al. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural. Bull Environ Contam Toxicol. 2015. https://doi.org/10.1007/s00128-015-1485-9.
Article
Google Scholar
Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut. 2008. https://doi.org/10.1016/j.envpol.2008.08.004.
Article
Google Scholar
Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46:6900–14.
Article
CAS
Google Scholar
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013. https://doi.org/10.1007/s00204-013-1079-4.
Article
Google Scholar
Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F. Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep. 2018;8:1565. https://doi.org/10.1038/s41598-018-19275-4.
Article
CAS
Google Scholar
Chen K, Zhou S, Yang S, Wu L. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv Funct Mater. 2015;25:1035–41. https://doi.org/10.1002/adfm.201403496.
Article
CAS
Google Scholar
Alves DCB, Silva R, Voiry D, Asefa T, Chhowalla M. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater Renew Sustain Energy. 2015;4:2. https://doi.org/10.1007/s40243-015-0042-0.
Article
Google Scholar
Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105(Part B):176–89. https://doi.org/10.1016/j.addr.2016.04.009.
Article
CAS
Google Scholar
Whitehead KA, Vaidya M, Liauw CM, Brownson DAC, Ramalingam P, Kamieniak J, Rowley-Neale SJ, Tetlow LA, Wilson-Nieuwenhuis JST, Brown D, McBain AJ, Kulandaivel J, Banks CE. Antimicrobial activity of graphene oxide-metal hybrids. Int Biodeterior Biodegrad. 2017;123:182–90. https://doi.org/10.1016/j.ibiod.2017.06.020.
Article
CAS
Google Scholar
Slate AJ, Karaky N, Whitehead KA. Antimicrobial properties of modified graphene and other advanced 2D material coated surfaces, Chap. 5. In: Banks C, Brownson D, editors. 2D Materials. Boca Raton: CRC Press; 2018.
Google Scholar
Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2015;28:1227–50.
Article
CAS
Google Scholar
Jana S, Kondakova AV, Shevchenko SN, Sheval EV, Gonchar KA, Timoshenko VY, Vasiliev AN. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application. Colloids Surf B. 2017;151:249–54. https://doi.org/10.1016/j.colsurfb.2016.12.017.
Article
CAS
Google Scholar
Shu Z, Zhang Y, Ouyang J, Yang H. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite. Appl Surf Sci. 2017;420:833–8. https://doi.org/10.1016/j.apsusc.2017.05.219.
Article
CAS
Google Scholar
Loureiro S, Tourinho PS, Cornelis G, VanDenBrink NW, Díez-Ortiz M, Vázquez-Campos S, et al. Nanomaterials as soil pollutants. In: Duarte AC, Cachada A, Rocha-Santos TAP, editors. Soil pollution. From monitoring to remediation; 2018. p. 161–190.
Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, et al. Fate of zinc oxide and silver nanoparticles in a pilot wstewater treatment plant and in processed biosolids. Environ Sci Technol. 2014;48:104–12.
Article
CAS
Google Scholar
Lahive E, Matzke M, Durenkamp M, Lawlor AJ, Thacker SA, Pereira MG, et al. Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms. Environ Sci Nano. 2017;4:78–88.
Article
CAS
Google Scholar
Coutris C, Joner EJ, Oughton DH. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ. 2012. https://doi.org/10.1016/j.scitotenv.2012.01.027.
Article
Google Scholar
Pachapur VL, Larios AD, Cledón M, Brar SK, Verma M, Surampalli RY. Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ. 2016. https://doi.org/10.1016/j.scitotenv.2012.01.027.
Article
Google Scholar
Philbrook NA, Winn LM, Nabiul-Afrooz ARM, Saleh NB, Walker VK. The effect of TiO(2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol. 2011. https://doi.org/10.1016/j.taap.2011.09.027.
Article
Google Scholar
Kim E, Kim SH, Kim HC, Lee SG, Lee SJ, Jeong SW. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol Environ Health Sci. 2011;3:1–6.
Article
Google Scholar
Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, et al. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf. 2013. https://doi.org/10.1016/j.ecoenv.2013.03.033.
Article
Google Scholar
Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res. 2005. https://doi.org/10.1385/BTER:104:1:083.
Article
Google Scholar
Balakrishnan S, Srinivasan M, Mohanraj J. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J Parasit Dis. 2016. https://doi.org/10.1007/s12639-014-0621-5.
Article
Google Scholar
Kumar PM, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoide. Parasitol Res. 2016. https://doi.org/10.1007/s00436-015-4799-y.
Article
Google Scholar
Ramkumar G, Karthi S, Suganya R, Shivakumar MS. Evaluation of silver nanoparticle toxicity of Coleus aromaticus leaf extracts and its larvicidal toxicity against dengue and filariasis vectors. Bionanoscience. 2016;6:308–15.
Article
Google Scholar
Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, et al. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res. 2015. https://doi.org/10.1007/s11356-015-4919-3.
Article
Google Scholar
Velicogna JR, Schwertfeger DM, Jesmer AH, Scroggins RP, Princz JI. The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil. Nanoimpact. 2017. https://doi.org/10.1016/j.impact.2017.03.001.be.
Article
Google Scholar
Diez-Ortiz M, Lahive E, George S, Schure AT, van Gestel CAM, Jurkschat K, et al. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia foetida in long-term aged soils. Environ Pollut. 2015. https://doi.org/10.1016/j.envpol.2015.03.033.
Article
Google Scholar
Saha N, Dutta Gupta S. Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater. 2017. https://doi.org/10.1016/j.jhazmat.2017.01.021.
Article
Google Scholar
Shams G, Ranjbar MR, Amiri A. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res. 2013;15:1630.
Article
CAS
Google Scholar
Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47:10637–44.
Article
CAS
Google Scholar
Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf. 2014. https://doi.org/10.1016/j.ecoenv.2014.07.013.
Article
Google Scholar
Cvjetko P, Milošić A, Domijan AM, Vinković I, Peharec Tolić S, Štefanić P, et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf. 2017. https://doi.org/10.1016/j.ecoenv.2016.11.009.
Article
Google Scholar
Gomes SIL, Murphy M, Nielsen MT, Kristiansen SM, Amorim MJB, Scott-Fordsmand JJ. Cu-nanoparticles ecotoxicity—explored and explained? Chemosphere. 2015. https://doi.org/10.1016/j.chemosphere.2015.06.045.
Article
Google Scholar
Gopalakrishnan Nair PM, Kim SH, Chung IM. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant. 2014. https://doi.org/10.1007/s11738-014-1667-9.
Article
Google Scholar
Liu R, Zhang H, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 2016. https://doi.org/10.1007/s11270-015-2738-2.
Article
Google Scholar
Murugan K, Roni M, Panneerselvam C, Aziz AT, Suresh U, Rajaganesh R, et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol Mol Plant Pathol. 2017. https://doi.org/10.1016/j.pmpp.2017.02.004.
Article
Google Scholar
Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem. 2010. https://doi.org/10.1016/j.soilbio.2009.12.007.
Article
Google Scholar
Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol. 2011;7:116–7.
Article
CAS
Google Scholar
You T, Liu D, Chen J, Yang Z, Dou R, Gao X, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments. 2017. https://doi.org/10.1007/s11368-017-1716-2.
Article
Google Scholar
Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.7b05389.
Article
Google Scholar
Kim S, Sin H, Lee S, Lee I. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol. 2013;23:1279–86.
Article
CAS
Google Scholar
Shen Z, Chen Z, Hou Z, Li T, Lu X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng. 2015;9:912–8.
Article
CAS
Google Scholar
Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, et al. Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0161979.
Article
Google Scholar
Simonin M, Martins JMF, LeRoux X, Uzu G, Calas A, Richaume A. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: lack of classical dose response relationships. Nanotoxicology. 2017. https://doi.org/10.1080/17435390.2017.1290845.
Article
Google Scholar
Simonin M, Richaume A. Impacto f engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res. 2015;22(18):13710–23. https://doi.org/10.1007/s11356-015-4171-x.
Article
CAS
Google Scholar
Pinna D. Coping with biological growth on stone heritage objects: methods, products, applications, and perspectives. 1st ed. Boca Raton: CRC Press Taylor & Francis Group; 2017.
Google Scholar
Lankone RS, Challis KE, Bi Y, Hanigan D, Reed RB, Zaikova T, et al. Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. Environ Sci Nano. 2017. https://doi.org/10.1039/C7EN00410A.
Article
Google Scholar
ISO/IEC IS 1348-3:2007. Water quality—determination of the inhibitory effect of water samples on the light emission of vibrio fischeri (luminescent bacteria test)—part 3: method using freeze-dried bacteria. Geneva: International Organization for Standardization. 2007.
Google Scholar
Nuzzo A, Hosseinkhani B, Boon N, Zanaroli G, Fava F. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. Environ Pollut. 2017. https://doi.org/10.1016/j.envpol.2016.11.036.
Article
Google Scholar
Brinch A, Hansen SF, Hartmann NB, Baun A. EU regulation of nanobiocides: challenges in implementing the biocidal product regulation (BPR). Nanomater. 2016. https://doi.org/10.3390/nano6020033.
Article
Google Scholar
Holden PA, Schimel JP, Godwin HA. Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol. 2014. https://doi.org/10.1016/j.copbio.2013.11.008.
Article
Google Scholar
Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA. Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17020036.
Article
Google Scholar
Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, et al. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b00608.
Article
Google Scholar
Hjorth R, Skjolding LM, Sørensen SN, Baun A. Regulatory adequacy of aquatic ecotoxicity testing of manufactured nanomaterials. Nanoimpact. 2017. https://doi.org/10.1016/j.impact.2017.07.003.
Article
Google Scholar
Baun A, Sayre P, Steinhäuser KG, Rose J. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. Nanoimpact. 2017. https://doi.org/10.1016/j.impact.2017.06.00.
Article
Google Scholar
You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments. 2018;18:211. https://doi.org/10.1007/s11368-017-1716-2.
Article
CAS
Google Scholar
Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem. 2008. https://doi.org/10.1897/08-002.1.
Article
Google Scholar
Vicario-Parés U, Lacave JM, Reip P, Cajaraville MP, Orbea A. Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper. Ecotoxicology. 2018. https://doi.org/10.1007/s10646-017-1873-5.
Article
Google Scholar
Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009. https://doi.org/10.1016/j.scitotenv.2008.10.053.
Article
Google Scholar
Ivask A, George S, Bondarenko O, Kahru A. Metal-containing nano-antimicrobials: differentiating the impact of solubilized metals and particles. In: Cioffi N, Rai M, editors. Nano-antimicrobials: progress and prospects. Berlin: Springer; 2012. p. 253–90.
Chapter
Google Scholar
Zhang L, Li J, Yang K, Liu J, Lin D. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut. 2016. https://doi.org/10.1016/j.envpol.2015.12.041.
Article
Google Scholar
Hammes J, Gallego-Urrea JA, Hasseliöv M. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. Water Res. 2013. https://doi.org/10.1016/j.watres.2013.06.015.
Article
Google Scholar
Peng C, Zhang W, Gao H, Li Y, Tong X, Li K, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials. 2017. https://doi.org/10.3390/nano7010021.
Article
Google Scholar
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Bio-nano interface and environment: a critical review. Environ Toxicol Chem. 2017. https://doi.org/10.1002/etc.3924.
Article
Google Scholar
Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol. 2014;48:12561–8.
Article
CAS
Google Scholar
Hegde K, Brar SK, Verma M, Surampalli RY. Current understanding of toxicity, risk and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng. 2016. https://doi.org/10.1007/s41204-016-0005-4.
Article
Google Scholar
Mahaye N, Thwala N, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res. 2017. https://doi.org/10.1016/j.mrrev.2017.05.004.
Article
Google Scholar
Minetto D, Ghirardini AV, Libralato G. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C 60 engineered nanoparticles: an overview. Environ Int. 2016. https://doi.org/10.1016/j.envint.2016.03.041.
Article
Google Scholar
Conine AL, Frost PC. Variable toxicity of silver nanoparticles to Daphnia magna: effects of algal particles and animal nutrition. Ecotoxicology. 2017. https://doi.org/10.1007/s10646-016-1747-2.
Article
Google Scholar
John AC, Küpper M, Manders-Groot AMM, Debray BB, Lacome JM, Kuhlbusch TAJ. Emissions and possible environmental implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere. 2017. https://doi.org/10.3390/atmos8050084.
Article
Google Scholar
Baysal A, Saygin H, Ustabasi GS. Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria. Environ Monit Assess. 2018. https://doi.org/10.1007/s10661-017-6408-2.
Article
Google Scholar
Pavagadhi S, Sathishkumar M, Balasubramanian R. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminant in the aquatic environment. Water Res. 2014. https://doi.org/10.1016/j.watres.2014.02.036.
Article
Google Scholar
Martín-de-Lucía I, Campos-Mañas MC, Agüera A, Rodea-Palomares I, Pulido-Reyes G, Leganés F, et al. Reverse Trojan-horse effect decreased wastewater toxicity in the presence of inorganic nanoparticles. Environ Sci Nano. 2017;4:1273–82.
Article
Google Scholar
Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresday JL, et al. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology. 2017. https://doi.org/10.1080/17435390.2017.1343404.
Article
Google Scholar
Zhang S, Deng R, Lin D, Wu F. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology. 2017. https://doi.org/10.1080/17435390.2017.1398358.
Article
Google Scholar
Okupnik A, Contardo-Jara V, Pflugmacher S. Potential role of engineered nanoparticles as contaminant carriers in aquatic ecosystems: estimating sorption processes of the cyanobacterial toxin microcystin-LR by TiO2 nanoparticles. Colloids Surf A. 2015. https://doi.org/10.1016/j.colsurfa.2015.06.013.
Article
Google Scholar
Qi N, Wang P, Wang C, Ao Y. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment. J Hazard Mater. 2018. https://doi.org/10.1016/j.jhazmat.2017.07.046.
Article
Google Scholar
Adeleye AS, Keller AA. Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b03684.
Article
Google Scholar
Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ. Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem. 2016;35:1055–67. https://doi.org/10.1002/etc.3385.
Article
CAS
Google Scholar