Michalski S. A systematic approach to preservation: description and integration with other museum activities. Stud Conserv. 1994;39(sup2):8–11.
Google Scholar
Batchelor CK, Batchelor G. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 1967.
Google Scholar
Wendt J. Computational fluid dynamics: an introduction. A von Karman Institute book. Berlin: Springer; 2008.
Google Scholar
Papakonstantinou KA, Kiranoudis CT, Markatos NC. Computational analysis of thermal comfort: the case of the archaeological museum of Athens. Appl Math Model. 2000;24(7):477–94.
Google Scholar
Pujol T, Solà J, Montoro L, Pelegrí M. Hydraulic performance of an ancient Spanish watermill. Renewable Energy. 2010;35(2):387–96.
Google Scholar
Castro-García M, Rojas-Sola JI, de Morena-de la Fuente E. Technical and functional analysis of Albolafia waterwheel (Cordoba, Spain): 3D modeling, computational-fluid dynamics simulation and finite-element analysis. Energy Conv Manag. 2015;92:207–14.
Google Scholar
Balocco C. Daily natural heat convection in a historical hall. J Cult Herit. 2007;8(4):370–6.
Google Scholar
Hussein AS, El-Shishiny H. Influences of wind flow over heritage sites: a case study of the wind environment over the Giza Plateau in Egypt. Environ Model Softw. 2009;24(3):389–410.
Google Scholar
Requena-Ruiz I. Thermal comfort in twentieth-century architectural heritage: two houses of Le Corbusier and André Wogenscky. Front Archit Res. 2016;5(2):157–70.
Google Scholar
Smyth TAG, Quinn R. The role of computational fluid dynamics in understanding shipwreck site formation processes. J Archaeol Sci. 2014;45:220–5. https://doi.org/10.1016/j.jas.2014.02.025.
Google Scholar
Balocco C, Grazzini G. Numerical simulation of ancient natural ventilation systems of historical buildings. A case study in Palermo. J Cult Herit. 2009;10(2):313–8.
Google Scholar
Barták M, Drkal F, Hensen J, Lain M, Matuska T, Schwarzer J, et al. Simulation to support sustainable HVAC design for two historical buildings in Prague. In: Proc. 18th conference on passive and low energy architecture, PLEA; 2001. p. 903–8.
Tang L, Nikolopoulou M, Zhao F, Zhang N. CFD modeling of built air environment in historic settlements: village microclimate. In: 2011 international conference on computer distributed control and intelligent environmental monitoring; 2011. p. 1086–92.
Nguyen AT, Tran QB, Tran DQ, Reiter S. An investigation on climate responsive design strategies of vernacular housing in Vietnam. Build Environ. 2011;46(10):2088–106.
Google Scholar
Al-Baghdadi MAS. CFD modeling of dust dispersion through Najaf historic city centre. Int J Energy Environ. 2014;5(6):723–9.
Google Scholar
Balocco C, Petrone G, Cammarata G. Numerical multi-physical approach for the assessment of coupled heat and moisture transfer combined with people movements in historical buildings. Build Simul. 2014;7(3):289–303.
Google Scholar
Ortloff CR. Water engineering at Petra (Jordan): recreating the decision process underlying hydraulic engineering of the Wadi Mataha pipeline system. J Archaeol Sci. 2014;44:91–7.
Google Scholar
Haut B, Viviers D. Analysis of the water supply system of the city of Apamea, using computational fluid dynamics. Hydraulic system in the north-eastern area of the city, in the Byzantine period. J Archaeol Sci. 2007;34(3):415–27.
Google Scholar
Tseropoulos G, Dimakopoulos Y, Tsamopoulos J, Lyberatos G. On the flow characteristics of the conical Minoan pipes used in water supply systems, via computational fluid dynamics simulations. J Archaeol Sci. 2013;40(4):2057–68.
Google Scholar
Pagliaro F, Bukowiecki E, Gugliermetti F, Bisegna F. The architecture of warehouses: a multidisciplinary study on thermal performances of Portus’ roman store buildings. J Cult Herit. 2015;16(4):560–6.
Google Scholar
Huang X, Qian W, Wei W, Guo J, Liu N. 3D numerical simulation on the flow field of single tuyere blast furnaces: a case study of the Shuiquangou iron smelting site dated from the 9th to 13th century in China. J Archaeol Sci. 2015;63:44–58.
CAS
Google Scholar
Tabor GR, Molinari D, Juleff G. Computational simulation of air flows through a Sri Lankan wind-driven furnace. J Archaeol Sci. 2005;32(5):753–66.
Google Scholar
Balocco C. Analysis of ancient natural ventilation systems inside the pitti palace in florence. In: Proceedings of the COMSOL conference 2008 Hannover; 2008.
Wu YC, Yang AS, Tseng LY, Liu CL. Myth of ecological architecture designs: comparison between design concept and computational analysis results of natural-ventilation for Tjibaou Cultural Center in New Caledonia. Energy Build. 2011;43(10):2788–97.
Google Scholar
Camuffo D, Pagan E, Rissanen S, Łukasz B, Kozłowski R, Camuffo M, et al. An advanced church heating system favourable to artworks: a contribution to European standardisation. J Cult Herit. 2010;11(2):205–19.
Google Scholar
D’Agostino D, Congedo PM. CFD modeling and moisture dynamics implications of ventilation scenarios in historical buildings. Build Environ. 2014;79:181–93.
Google Scholar
Pitsch S, Holmberg S, Angster J. Ventilation system design for a church pipe organ using numerical simulation and on-site measurement. Build Environ. 2010;45(12):2629–43.
Google Scholar
Grau-Bové J, Mazzei L, Malki-Ephstein L, Thickett D, Strlič M. Simulation of particulate matter ingress, dispersion and deposition in a historical building. J Cult Herit. 2016;18:199–208.
Google Scholar
Pineda P, Iranzo A. Analysis of sand-loaded air flow erosion in heritage sites by computational fluid dynamics: method and damage prediction. J Cult Herit. 2017;25:75–86.
Google Scholar
Corgnati SP, Perino M. CFD application to optimise the ventilation strategy of Senate Room at Palazzo Madama in Turin (Italy). J Cult Herit. 2013;14(1):62–9.
Google Scholar
Mikayama A, Hokoi S, Ogura D, Okada K, Su B. Effects of drifting sand particles on deterioration of mural paintings on the east wall of Cave 285 in Mogao Caves, Dunhuang. Energy Procedia. 2015;78:1311–6.
Google Scholar
Dillon C, Lindsay W, Taylor J, Fouseki K, Bell N, Strlič M. Collections demography: stakeholders’ views on the lifetime of collections. In: Climate for collections conference, vol. 79. Munich: Doerner Institut; 2012. p. 4558.
Baggio P, Bonacina C, Romagnoni P, Stevan AG. Microclimate analysis of the scrovegni chapel in padua—measurements and simulations. Stud Conserv. 2004;49(3):161–76.
Google Scholar
Ascione F, Minichiello F. Microclimatic control in the museum environment: air diffusion performance. Int J Refrig. 2010;33(4):806–14.
Google Scholar
Albero S, Giavarini C, Santarelli ML, Vodret A. CFD modeling for the conservation of the Gilded Vault Hall in the Domus Aurea. J Cult Herit. 2004;5(2):197–203.
Google Scholar
Stazi F, Vegliò A, Di Perna C, Munafò P. Experimental comparison between 3 different traditional wall constructions and dynamic simulations to identify optimal thermal insulation strategies. Energy Build. 2013;60:429–41.
Google Scholar
Steeman HJ, Van Belleghem M, Janssens A, De Paepe M. Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage. Build Environ. 2009;44(10):2176–84.
Google Scholar
Pasquarella C, Balocco C, Pasquariello G, Petrone G, Saccani E, Manotti P, et al. A multidisciplinary approach to the study of cultural heritage environments: experience at the Palatina Library in Parma. Sci Total Environ. 2015;536:557–67.
CAS
Google Scholar
Litti G, Audenaert A, Braet J. Natural ventilation as passive cooling strategy aimed at summer overheating reduction in heritage buildings: the case study of Vleeshuis Museum in Antwerp (Belgium). In: The European conference on sustainability, energy and the environment.
Balocco C, Petrone G, Maggi O, Pasquariello G, Albertini R, Pasquarella C. Indoor microclimatic study for cultural heritage protection and preventive conservation in the Palatina Library. J Cult Herit. 2016;22:956–67.
Google Scholar
Grau-Bové J, Strlič M, Mazzei L. Applicability of a drift-flux model of aerosol deposition in a test tunnel and an indoor heritage environment. Build Environ. 2016;106:78–90.
Google Scholar
Brandl D, Ruisinger DIU. Analysis of the thermal behavior of historical box type windows for renovation concepts with CFD. In: Sustainable building conference, Graz; 2013.
Kurabuchi T, Ogasawara T, Ochiai H, Lee S. A study on the indoor environment of the main building of the national museum of western art, in Japan, for the development of a retrofit scheme. Int J Vent. 2013;12(2):119–28.
Google Scholar
D’Agostino D, Congedo PM, Cataldo R. Computational fluid dynamics (CFD) modeling of microclimate for salts crystallization control and artworks conservation. J Cult Herit. 2014;15(4):448–57.
Google Scholar
Schellen H, van Schijndel A, Neilen D, van Aarle M. Damage to a monumental organ due to wood deformation caused by church heating. In: 2nd international conference on research in building physics, Leuven, Belgium; 2003.
Guimaraes AS, Delgado JMPQ, de Freitas VP. Mathematical analysis of the evaporative process of a new technological treatment of rising damp in historic buildings. Build Environ. 2010;45(11):2414–20.
Google Scholar
Caruso G, Mariotti M, de Santoli L. CFD analysis and risk management approach for the long-term prediction of marble erosion by particles impingement. CFD Lett. 2013;5(3):108–19.
Google Scholar
Cortella G, Manzan M, Comini G. CFD simulation of refrigerated display cabinets. Int J Refrig. 2001;24(3):250–60.
Google Scholar
Sun Y, Wu Y, Wilson R, Lu S. Experimental measurement and numerical simulation of the thermal performance of a double glazing system with an interstitial Venetian blind. Build Environ. 2016;103:111–22.
Google Scholar
Malekjani N, Jafari SM. Simulation of food drying processes by computational fluid dynamics (CFD); recent advances and approaches. Trends Food Sci Technol. 2018;78:206–23.
CAS
Google Scholar
Tang L, Nikolopoulou M, Zhang N. Bioclimatic design of historic villages in central-western regions of China. Energy Build. 2014;70:271–8.
Google Scholar
Fintikakis N, Gaitani N, Santamouris M, Assimakopoulos M, Assimakopoulos DN, Fintikaki M, et al. Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain Cities Soc. 2011;1(1):54–62.
Google Scholar
Clausen PA, Liu Z, Xu Y, Kofoed-Sørensen V, Little JC. Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC: measurements and CFD simulation. Atmos Environ. 2010;44(23):2760–6.
CAS
Google Scholar
Aste N, Torre SD, Adhikari RS, Buzzetti M, Pero CD, Leonforte F, et al. Sustainable church heating: the Basilica di Collemaggio case-study. Energy Build. 2016;116:218–31.
Google Scholar
Manual FU. Fluent Inc. Chapter. 2003;6:14–16.
Liu HB, Lin N, Pan SS, Miao J, Norford LK. High sensitivity, miniature, full 2-D anemometer based on MEMS hot-film sensors. IEEE Sens J. 2013;13(5):1914–20.
Google Scholar
Yasa E, Fidan G, Tosun M. Analysis of historic buildings in terms of their microclimatic and thermal comfort performances “example of Konya slender minaret Madrasah”. J Arch Eng Technol. 2014;3(126):2.
Google Scholar
Tablada de la Torre AE, Blocken B, Carmeliet J, De Troyer F, Verschure H. Airflow conditions and thermal comfort in naturally-ventilated courtyard buildings in a tropical-humid climate. In: 6th international conference on urban climate; 2006.
Srebric J, Vukovic V, He G, Yang X. CFD boundary conditions for contaminant dispersion, heat transfer and airflow simulations around human occupants in indoor environments. Build Environ. 2008;43(3):294–303.
Google Scholar
Oh W, Kato S. The effect of airspeed and wind direction on human’s thermal conditions and air distribution around the body. Build Environ. 2018;141:103–16.
Google Scholar
Lipska B, Trzeciakiewicz Z, Ferdyn-Grygierek J, Popiołek Z. The improvement of thermal comfort and air quality in the historic assembly hall of a university. Indoor Built Environ. 2012;21(2):332–47.
Google Scholar
Bonacina C, Cappellati F, Peron F, Romagioni P, Stevan AG. On the applicability of HVAC system for cultural heritage: the Wedding Chamber (Camera Picta) in Mantova (Italy). In: Historical and existing buildings: designing the retrofit. An overview from energy performances to indoor air quality; 2014.
Cao LN, Cao J, Lee S, Zhang Y, Tie X. Numerical simulation of the micro environment in the Han Yang Mausoleum museum. Aerosol Air Qual Res. 2012;12(4):544–52.
Google Scholar
Ascione F, Bellia L, Capozzoli A. A coupled numerical approach on museum air conditioning: energy and fluid-dynamic analysis. Appl Energy. 2013;103:416–27.
Google Scholar
Hussain S, Oosthuizen PH, Kalendar A. Evaluation of various turbulence models for the prediction of the airflow and temperature distributions in atria. Energy Build. 2012;48:18–28.
Google Scholar
Nielsen PV. The selection of turbulence models for prediction of room airflow. Dept. of Building Technology and Structural Engineering; 1998.
Franke J, Hellsten A, Schlünzen H, Carissimo B. The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. Int J Environ Pollut. 2011;44(1–4):419–27.
CAS
Google Scholar
Chen Q, Jelana S. A procedure for verification, validation, and reporting of indoor environment CFD analyses. HVAC&R Res. 2002;8(2):201–16.
Google Scholar