Braconnot H. De la transformation de plusieurs substances végétales en un principe nouveau. Ann Chim Phys. 1833;52:290–4.
Google Scholar
Suida W. Über den Einfluss der aktiven Atomgruppen in den Textilfasern auf das Zustandekommen von Färbungen. Monatsh Chem. 1905;26:413–27.
Article
CAS
Google Scholar
Feller R, Wilt M. Evaluation of cellulose ethers for conservation. Los Angeles: Getty Conservation Institute; 1990.
Google Scholar
Hubert E. Verfahren zur Darstellung von Cellulosederivaten. DE 363,192; 1920.
Leuchs O. Verfahren zur Darstellung von Cellulosederivaten. DE 322,586; 1912.
Lilienfeld L. Alkyl ethers of cellulose and process of making the same. US 1,188,376; 1916.
Jansen E. Verfahren zur Herstellung von Celluloseverbindungen. DE 332,203; 1918.
Hader RN, Waldeck WF, Smith FW. Carboxymethylcellulose. Ind Eng Chem Res. 1952;44(12):2803–12.
Article
CAS
Google Scholar
Klug ED, Tennent HG. Manufacture of cellulose ethers. US 2,572,039; 1951.
Rodgers Jr SM, Wakeman BF, Savage AS. Novel hydroxypropyl methyl cellulose ethers, a process for preparing the same, and compositions utilizing such ethers. US 3,388,082; 1968.
Bülichen D. Wirkmechanismus verschiedener Celluloseether als Wasserretentionsmittel in der Tiefbohrzementierung und in Trockenmörtelsystemen. Dissertation, TU Munich. 2013.
Hopff H, Lüssi H, Hammer E. Zur Kenntnis der Perlpolymerisation. 5. Mitteilung: Einfluß der chemischen Struktur des Schutzkolloids. Makromol Chem. 1965;84:274–81.
Article
CAS
Google Scholar
Hercules Inc. CULMINAL® methylcellulose methylhydroxyethylcellulose methylhydroxypropylcellulose physical and chemical properties. Wilmington: Hercules Incorporated Aqualon Division; 1995.
Google Scholar
Ashland Product data CulminalTM methylcellulose derivatives. https://www.brenntag.com/media/documents/bsi/product-data-sheets/material-science/ashland-cellulose-rheology-modifiers/culminal_mc_mhec_pds.pdf. Accessed 19 Jan 2022.
Hercules Inc. AQUALON® sodium carboxymethylcellulose physical and chemical properties. Wilmington: Hercules Incorporated Aqualon Division; 1999.
Google Scholar
Jenkinson H. Some notes on the preservation, moulding and casting of seals. Antiq J. 1924;4:388–403.
Article
Google Scholar
Waechter O. Die Restaurierung einer armenischen Evangelien-Handschrift (cod 242) aus der Bibliothek der Mechitaristen-Congregation in Wien. Österreichische Zeitschrift für Kunst- und Denkmalpflege. 1968;22:43–7.
Google Scholar
Asher CG. The conservation of a large collection of architectural drawings: the Howard Ship Yards & Dock Company Mss. In: Ninth annual meeting, Philadelphia, 27–31 May 1981, Preprints. American Institute for Conservation; 1981. p. 20–7.
Hofenk-de Graaff J. Hydroxy propyl cellulose, a multipurpose conservation material. In: ICOM Committee for conservation 6th triennial meeting, Ottawa, 21–25 September 1981, Preprints. Paris: ICOM; 1981. p. 81/4/9:1–7.
Ravines P, Faurie A. The impregnation and absorption behaviour of methyl cellulose of two modern papers. In: Bridgland J, editor. 10th triennial meeting, Washington, Preprints. Paris: ICOM-CC; 1993. p. 462–8.
Brückle I. Update: remoistenable lining with methyl cellulose adhesive preparation. Top Photogr Preserv. 1997;7:88–90.
Google Scholar
Laroque C. Transparent papers: a technological outline and conservation review. Stud Conserv. 2000;45(1):21–31.
Article
Google Scholar
Hofmann C, Hartl A, Ahn K, Faerber I, Henniges U, Potthast A. Studies on the conservation of verdigris on paper. Restaurator. 2015;36(2):147–82.
CAS
Google Scholar
Kottulinsky L. Bericht über die Restaurierung eines romanischen Deckenfreskos in Enns. Österreich Maltechnik Restauro. 1982;88:91–7.
Google Scholar
Redman C. Cellulose sorbents: an evaluation of their working properties for use in wall painting conservation. Conservator. 1999;23(1):68–76.
Article
Google Scholar
Belen’kaia NG, Gorsenina WF, Kuzenetsova EN. The use of methylcellulose for the restoration of archival and library material. In: Fliate DM, editor. Starenie bumagi. Moscow: Akademiia nauk SSSR, Laboratoriia konservatskii i restavratsii dokumentov; 1965. p. 94–111.
Ranacher M. Painted lenten veils and wall coverings in Austria: technique and conservation. Stud Conserv. 1980;25(sup1):142–8.
Article
Google Scholar
Dignard C, Douglas R, Guild S. Ultrasonic misting. Part 2, treatment applications. J Am Inst Conserv. 1997;36:127–41.
Article
Google Scholar
O‘Donoghue E, Johnson AM, Mazurek J, Preusser F, Schilling M, Walton MS. Dictated by media: conservation and technical analysis of a 1938 Joan Miró canvas painting. Stud Conserv. 2006;51(sup2):62–8.
Article
Google Scholar
Sindlinger-Maushart K, Petersen K. Methylcellulose als Klebemittel für die Malschichtbefestigung auf Leinwandbildern: Untersuchung zur Klebkraft und zur mikrobiellen Resistenz. Zeitschrift für Kunsttechnologie und Konservierung. 2007;21(2):371–82.
Google Scholar
Rosenqvist AM. The Stabilizing of Wood found in the Viking Ship of Oseberg—Part II. Stud Conserv. 1959;4(2):62–72.
CAS
Google Scholar
Thomsen FG. Repair of a Tlingit basket using molded cotton fibers. In: ICOM Committee for conservation 7th triennial meeting, Ottawa, Canada 21–25 September 1981 preprints. Paris: ICOM; 1981. p. 81/3/2:1–3.
Masschelein-Kleiner L, Bergiers F. Influence of adhesives on the conservation of textiles. Stud Conserv. 1984;29(sup1):70–3.
Article
Google Scholar
Hillyer L, Tinker Z, Singer P. Evaluating the use of adhesives in textile conservation: Part I: an overview and surveys of current use. Conservator. 1997;21(1):37–47.
Article
Google Scholar
Schulte EK. Wallpaper conservation at the Longfellow national historic site: parlor and dining room. J Am Inst Conserv. 1981;20(2):100–10.
Article
Google Scholar
Karnes C, Ream J, Wendelin E. Wallpapers at Winterthur: seeing them in a “new light”. In: BPG annual. 2000;19.
Thomson R. Paper leather wallpapers: a contradiction in terms. Beiträge zur Erhaltung von Kunst- und Kulturgut. 2004;2:16–9.
Google Scholar
Koller M, Hammer I, Paschinger H, Ranacher M. The abbey church at Melk: examination and conservation. Stud Conserv. 1980;25(sup1):101–12.
Article
Google Scholar
Howells R, Burnstock A, Hedley G, Hackney S. Polymer dispersions artificially aged. Stud Conserv. 1984;29(sup1):36–43.
Article
Google Scholar
Learner T. A review of synthetic binding media in twentieth-century paints. Conservator. 2000;24(1):96–103.
Article
Google Scholar
Jablonski E, Learner T, Hayes J, Golden M. The conservation of acrylic emulsion paintings: a literature review. Tate Papers. 2003. https://www.tate.org.uk/research/publications/tate-papers/02/conservation-concerns-for-acrylic-emulsion-paints-literature-review. Accessed 19 Jan 2022.
Doménech Carbo MT, Silva MF, Aura-Castro E, Fuster-López L, Kröner S, Martinez-Bazán ML, Más-Barberá X, Mecklenburg MF, Osete-Cortina L, Domenéch A, Gimeno-Adelatando JV, Yusá-Marco DJ. Study of behaviour on simulated daylight ageing of artists’ acrylic and poly(vinyl acetate) paint films. Anal Bioanal Chem. 2011;399(9):2921–37.
Article
CAS
Google Scholar
Melchiorre Di Crescenzo M, Zendri E, Sánchez-Pons M, Fuster-López L, Yusá-Marco DJ. The use of waterborne paints in contemporary murals: comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polym Degrad Stabil. 2014;107:285–93.
Article
CAS
Google Scholar
Horie CV. Materials for conservation. 2nd ed. Oxford: Butterworth-Heinemann; 2010.
Google Scholar
Kremer Pigmente. Produktdatenblatt 63720 Ethylcellulose ET 200. https://www.kremer-pigmente.com/elements/resources/products/files/63720.pdf. Accessed 19 Jan 2022.
De Witte E, Florquin S, Goessens-Landrie M. Influence of the modification of dispersions on film properties. Stud Conserv. 1984;29(sup1):32–5.
Article
Google Scholar
Mehra VR. Dispersion as lining adhesive and its scope. Stud Conserv. 1984;29(sup1):44–5.
Article
Google Scholar
Godfrey IM, King SN. Conservation of degraded rope from marine archaeological sites. AICCM Bull. 1990;16(3):93–107.
Article
Google Scholar
Böhme N, Anders M, Reichelt T, Schuhmann K, Bridarolli A, Chevalier A. New treatments for canvas consolidation and conservation. Herit Sci. 2020;8:16. https://doi.org/10.1186/s40494-020-0362-y.
Article
Google Scholar
Butkeviciute R, Lukseniene J, Senvaitiene J, Vaineikis A, Zickuviene G. Application of cellulose ethers for structure consolidation. In: Weyer A, editor. Konsolidieren und Kommunizieren: Materialien und Methoden zur Konsolidierung von Kunst- und Kulturgut im interdisziplinären Dialog. Schriften des Hornemann Instituts. Petersberg: Michael Imhof Verlag; 2018. p. 156–61.
Wolbers R, Stavroudis C. Aqueous methods for the cleaning of paintings. In: Stoner JH, Rushfield R, editors. Conservation of Easel paintings. Routledge series in conservation and museology. New York: Routledge; 2012. p. 500–23.
Google Scholar
McDavis-Conway A, Godfrey J, Pouliot BP, Wolbers R. Hair consolidation and treatment of an insect-damaged dancing hat from Sierra Leone. Objects Spec Group Postprints. 2006;13:184–94.
Google Scholar
Kite M, Thompson R. Conservation of leather and related materials. Oxford: Butterworth-Heinemann; 2006.
Book
Google Scholar
Johnson A. Evaluation of the use of SC6000 in conjunction with Klucel G as a conservation treatment for bookbinding leather: notes on a preliminary study. J Inst Conserv. 2013;36(2):125–44.
Article
Google Scholar
Gill K, Boersma F. Solvent reactivation of hydroxypropyl cellulose (Klucel G®) in textile conservation: recent developments. Conservator. 1997;21(1):12–20.
Article
Google Scholar
Lennard F, Ewer P. Textile conservation. 1st ed. Oxford: Butterworth-Heinemann; 2010.
Book
Google Scholar
Anderson P, Reidell S. Adhesive pre-coated repair materials. In: BPG annual. 2009;28:112.
Pataki A. Remoistenable tissue preparation and its practical aspects. Restaurator. 2009;30(1):51–69.
Google Scholar
Dreyfuss-Deseigne R. A new mending material: nanocellulose film. J Paper Conserv. 2017;18(1):36–7.
Powell W. Creative problem solving in paper conservation: 4 case studies of complex treatments. In: 8th AICCM book, paper and photographic materials symposium. AICCM conference proceedings. 2014. p. 91–6.
Sàrries ZL. New technologies applied to restore a nineteenth-century Wax Medardo Rosso sculpture. Objects Spec Group Postprints. 2017;24:337–50.
Google Scholar
Ali MF, El Sheikha AM, Ali AF. Analytical study and conservation of gilded mummy form cartonnage from the Greco-Roman period in Cairo museum. Mediterr Archaeol Archaeom. 2016;16(2):127–37.
Google Scholar
Berli J, Belhadj O. Consolidating herbarium specimens using two-sided hydroxylpropylcellulose pre-coated paper. J Pap Conserv. 2020;21(1):31–4.
Article
Google Scholar
Berger GA. Formulating adhesives for the conservation of paintings. In: Brommelle N, Smith P, editors. Conservation and restoration of pictorial art. Oxford: Butterworth-Heinemann; 1976. p. 169–81.
Google Scholar
Pataki-Hundt A. Conservation treatment and stabilization of the ninth-century Stuttgart Psalter. J Inst Conserv. 2012;35(2):152–64.
Article
Google Scholar
Baker C. Methylcellulose & sodium carboxy-methylcellulose: uses in paper conservation. In: BPG annual. 1982;1:16–9.
Eggert G, Kuiter R, Korenberg C, Ziegler J, Bette S, Stelzner J. Metal conservation, cellulose nitrate and the Oddy test. In: Chemello C, Brambilla L, Joseph E, editors. Metal 2019—proceedings of the interim meeting of the ICOM-CC Metals Working Group. September 2–6, 2019, Neuchâtel, Switzerland. Paris: ICOM-CC; 2019. p. 125–31.
Ziegler J, Kuhn-Wawrzinek C, Eska M, Eggert G. Popping stoppers, crumbling coupons—Oddy testing of common cellulose nitrate ceramic adhesives. In: Bridgland J, editor. ICOM-CC 17th triennial conference preprints, Melbourne, 15–19 September 2014. Paris: ICOM; 2014. p. 8.
Samide MJ, Liggett MC, Mill J, Smith GD. Relating volatiles analysis by GC–MS to Oddy test performance for determining the suitability of museum construction materials. Herit Sci. 2018;6:47.
Article
CAS
Google Scholar
Nel P. A preliminary investigation into the identification of adhesives on archaeological pottery. AICCM Bull. 2006;30(1):27–37.
Article
Google Scholar
Nel P, Lau D. Identification of a formulation change in a conservation-grade adhesive. In: Ambers J, Higgitt C, Harrison L, Saunders D, editors. Holding it all together: ancient and modern approaches to joining, repair and consolidation. London: Archetype; 2009. p. 99–106.
Google Scholar
Korenberg C, Keable M, Phippard J, Doyle A. Refinements introduced in the Oddy test methodology. Stud Conserv. 2018;63(1):2–12.
Article
Google Scholar
Oddy test of Klucel® G, Metropolitan Museum of Art (MMA). https://www.conservation-wiki.com/w/images/e/ed/3003_Si.jpg. Accessed 19 Jan 2022.
Oddy test of Methocel® A4C methylcellulose, Metropolitan Museum of Art (MMA). https://www.conservation-wiki.com/w/images/4/42/3067_GA.jpg. Accessed 19 Jan 2022.
Thickett D, Lee LR. Selection of materials for the storage or display of museum objects. 2nd ed. British museum occasional papers 111. London: British Museum Press; 2004.
Google Scholar
ISO 16000-6, Indoor air—Part 6: determination of organic compounds (VVOC, VOC, SVOC) in indoor and test chamber air by active sampling on sorbent tubes, thermal desorption and gas chromatography using MS or MS FID. Berlin: Beuth-Verlag; 2021.
ISO 16000-3, Indoor air—Part 3: determination of formaldehyde and other carbonyl compounds in indoor air and test chamber air—active sampling method. Berlin: Beuth-Verlag; 2011.
VDI 4301 Part 7—measurement of indoor air pollution–measurement of carboxylic acids. Berlin: Beuth-Verlag; 2018.
Welter N, Schüssler U, Kiefer W. Characterisation of inorganic pigments in ancient glass beads by means of Raman microspectroscopy, microprobe analysis and X-ray diffractometry. J Raman Spectrosc. 2007;38:113–21.
Article
CAS
Google Scholar
Ciupiński Ł, Fortuna-Zaleśna E, Garbacz H, Koss A, Kurzydłowski KJ, Marczak J, Mróz J, Onyszczuk T, Rycyk A, Sarzyński A, Skrzeczanowski W, Strzelec M, Zatorska A, Żukowska GZ. Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensors. 2010;10:4926–49.
Article
CAS
Google Scholar
Bell IM, Clark RJH, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (Pre- ≈ 1850 AD). Spectrochim Acta Part A. 1997;53:2159–79.
Article
Google Scholar
Burgio L, Clark RJH, Firth S. Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst. 2001;126:222–7.
Article
CAS
Google Scholar
Angelin EM, Babo S, Ferreira JL, Melo MJ. Raman microscopy for the identification of pearlescent pigments in acrylic works of art. J Raman Spectrosc. 2019;50:232–41.
Article
CAS
Google Scholar
Bernard M-C, Costa V, Joiret S. Assessing indoor lead corrosion using Raman spectroscopy during electrochemical reduction. e-PS. 2009;6:101–6.
Ghiara G, Campodonico S, Piccardo P, Martini C, Storme P, Maddalena M. Micro Raman investigation on corrosion of Pb-based alloy replicas of letters from the museum Plantin-Moretus, Antwerp. J Raman Spec. 2014;45:1093–102.
Article
CAS
Google Scholar
Raychaudhuri MR, Brimblecombe P. Formaldehyde oxidation and lead corrosion. Stud Conserv. 2000;45:226–32.
CAS
Google Scholar
Eggert G, Fischer A. The formation of formates: a review of metal formates on heritage objects. Herit Sci. 2021;9:26.
Article
CAS
Google Scholar
Jehlicka J, Vitek P, Edwards HGM, Hargreaves D, Capounc T. Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J Raman Spectrosc. 2009;40:1082–6.
Article
CAS
Google Scholar