Turk J, Mauko Pranjić A, Hursthouse A, Turner R, Hughes JJ. Decision support criteria and the development of a decision support tool for the selection of conservation materials for the built cultural heritage. J Cult Herit. 2018;37:44–53.
Article
Google Scholar
Pernet B, Silverman ER, Valentich SP. The seashells of an iconic public artwork: diversity and provenance of the mollusks of the watts towers. JCMS. 2019;17:1.
Article
Google Scholar
Draganov D, Hunziker J, Heller K, Gutkowski K, Marte F. High-resolution ultrasonic imaging of artworks with seismic interferometry for their conservation and restoration. Stud Conserv. 2018;63:1–15.
Article
CAS
Google Scholar
Radis M, Iacomussi P, Aghemo C. Optical characteristics and visual appearance for artwork materials. In: Pezzati L, Targowski P, editors. Optics for arts, architecture, and archaeology V. Bellingham: SPIE; 2015. p. 95270J.
Google Scholar
Tasker A, Wilkinson IP, Williams M, Morris M, Cooper NJ, Fulford MG. Provenance of chalk tesserae from a roman town-house in Vine Street, Leicester. Britannia. 2013;44:219–46.
Article
Google Scholar
Nöller R, Hahn O. Illuminated manuscripts from turfan tracing silk road glamour by analyzing pigments. Sci Technol Archaeol Res. 2015;1:50–9.
Google Scholar
Zagora J. SEM-EDX pigment analysis and multi-analytical study of the ground and paint layers of Francesco Fedrigazzi’s painting from Kostanje. ceroart. 2013; EGG 3.
Antunes V, Candeias A, Coroado J, Serrão V, Cachão M, Carvalho ML. A multidisciplinary approach to the study of the brightening effects of white chalk ground layers in 15th and 16th century paintings. Anal Methods. 2016;8:4785–97.
Article
Google Scholar
Gruchow F, Machill S, Thiele S, Herm C. Imaging FTIR spectroscopic investigations of wood: paint interface of aged polychrome art objects. In: Schreiner M, editor. e-Preservation Science: morana-rtd.com; 2009. p. 145–50.
Schulz H, Kropp B. Micro spectroscopy FTIR reflectance examination of paint binders on ground chalk. Fresenius J Anal Chem. 1993;346:114–22.
Article
CAS
Google Scholar
Antunes V, Candeias A, Carvalho ML, Oliveira MJ, Manso M, Seruya AI, et al. GREGÓRIO LOPES painting workshop: characterization by X-ray based techniques. Analysis by EDXRF, μ-XRD and SEM-EDS. J Inst. 2014;9:C05006–C05006.
Google Scholar
Coccato A. Application of Raman and X-ray fluorescence spectroscopies to Cultural Heritage materials -he non-destructive examination of paintings, pigments, and their degradation. Doctoral dissertation. Faculty of Arts and Philosophy, Ghent University; 2017.
Picollo M, Aceto M, Vitorino T. UV-Vis spectroscopy. Physical Sci Rev. 2019. https://doi.org/10.1515/psr-2018-0008.
Article
Google Scholar
Kuroda R, Sugawa S. UV/VIS/NIR imaging technologies: challenges and opportunities. In: Dhar NK, Dutta AK, editors. Image sensing technologies: materials, devices, systems, and applications II. Bellingham: SPIE; 2015. p. 8.
Google Scholar
Shackley MS. Is there reliability and validity in portable X-ray fluorescence spectrometry (PXRF)? SAA Archaeol Rec. 2010;10:17–20.
Google Scholar
Liritzis I, Zacharias N. Portable XRF of archaeological artifacts: current research, potentials and limitations. In: Shackley MS, editor. X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York, NY: Springer; 2011. p. 109–42.
Chapter
Google Scholar
Antunes V, Candeias A, Oliveira MJ, Lorena M, Seruya AI, Carvalho ML, et al. Calcium sulfate fillers and binders in Portuguese 15th and 16th centuries: ground layers from a family painting workshop—study by multianalytical spectroscopic techniques. Microchem J. 2016;125:290–8.
Article
CAS
Google Scholar
Antunes V, Valadas S, Serrão V, Carvalho ML, Candeias A, Mirão J, et al. Josefa d’ Óbidos workshop from panel to canvasMultianalytical approach to materials and technical evolution of the most significant Portuguese painting workshop of the 17th century. J Mol Struct. 2019;1188:31–41.
Article
CAS
Google Scholar
Hradil D, Hradilová J, Holcová K, Bezdička P. The use of pottery clay for canvas priming in Italian Baroque—an example of technology transfer. Appl Clay Sci. 2018;165:135–47.
Article
CAS
Google Scholar
Zagora J. Historical development of coloured grounds in italian painting from the 15th to the mid-18th century—present insights and open questions. Croat Conserv Inst Yearb. 2017;8:73–94.
Article
Google Scholar
Hradil D, Hradilová J, Lanterna G, Galeotti M, Holcová K, Jaques V, et al. Clay and alunite-rich materials in painting grounds of prominent Italian masters—Caravaggio and Mattia Preti. Appl Clay Sci. 2020;185:105412.
Article
CAS
Google Scholar
Geyssant J. Features and characteristics of calcium carbonate. In: Tegethoff FW, editor. Calcium carbonate. Basel: Birkhäuser; 2001. p. 2–15.
Chapter
Google Scholar
Mayhew TD, Ellis M, Seraphin S. Steatite and calcite natural white chalks in traditional old master drawings. J Am Inst Conserv. 2012;51:175–98.
Article
Google Scholar
Bown PR, Lees JA, Young JR. Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR, editors. Coccolithophores. Berlin: Springer; 2004. p. 481–508.
Chapter
Google Scholar
Haynes JR. Foraminifera. 1st ed. London: Palgrave Macmillan; 1981.
Book
Google Scholar
Theriot E, Herbarium D, Round FE, Crawford RM, Mann DG. The diatoms. Biology and morphology of the genera. Syst Biol. 1992;41:125–6.
Google Scholar
Parr JF, Taffs KH, Lane CM. A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments. J Paleolimnol. 2004;31:383–90.
Article
Google Scholar
Riding JB, Kyffin-Hughes JE. A direct comparison of three palynological preparation techniques. Rev Palaeobot Palynol. 2011;167:212–21.
Article
Google Scholar
McLean D, Chisholm JI. Reworked palynomorphs as provenance indicators in the Yeadonian of the Pennine Basin. Proc Yorks Geol Soc. 1996;51:141–51.
Article
Google Scholar
Pound MJ, O’Keefe JMK, Marret F. An overview of techniques applied to the extraction of non-pollen palynomorphs, their known taphonomic issues and recommendations to maximize recovery. Geol Soc Lond Spec Publ. 2021;511:63–76.
Article
Google Scholar
Fiorentino A. The potential of nannofossil analysis applied to archaeological studies: the case of the Riace’s Bronzes. J Nannoplantkon Res. 1998;20:101–3.
Google Scholar
Hradil D, Hradilová J, Bezdička P, Švarcová S. Differentiation between anonymous paintings of the 17th and the early 18th century by composition of clay-based grounds. Appl Clay Sci. 2015;118:8–20.
Article
CAS
Google Scholar
Wilkinson I, Quinn P, Williams M, Taylor J, Whitbread I. Ceramic micropalaeontology. In: Hunt A, editor. The oxford handbook of archaeological ceramic analysis. Oxford: Oxford University Press; 2016. p. 265–87.
Google Scholar
Quinn PS, Day PM. Calcareous microfossils in bronze age aegean ceramics: illuminating technology and provenance. Archaeometry. 2007;49:775–93.
Article
Google Scholar
Quinn PS. Calcareous nannofossils as a tool for the provenance determination of archaeological ceramics, building materials and related artefacts. In: Williams M, Hill T, Boomer I, Wilkinson IP, editors. The archaeological and forensic applications of microfossils: a deeper understanding of human history. London: The Geological Society on behalf of The Micropalaeontological Society; 2017. p. 159–75.
Google Scholar
Quinn PS, Day PM. Ceramic micropalaeontology: the analysis of microfossils in ancient ceramics. J Micropaleontol. 2007;26:159–68.
Article
Google Scholar
Quinn PS. The occurrence and research potential of microfossils in inorganic archaeological materials. Geoarchaeology. 2008;23:275–91.
Article
Google Scholar
Kędzierski M, Kruk MP. Similarity and provenance of underpainting chalk grounds based on their nannofossil assemblages cluster analysis. J Cult Herit. 2018;34:13–22.
Article
Google Scholar
Švábenická L, Reháková D, Svobodová A. Calpionellid and nannofossil correlation across the Jurassic–Cretaceous boundary interval, Kurovice Quarry, Outer Western Carpathians. In: Berichte der Geologischen Bundesanstalt. Wien: 10th Int. Symp. Cretaceous; 2017. p. 252.
Švábenická L. Coccoliths in the chalk material of high Gothic paintings (14th and 15th centuries, Bohemia). Vestn Cesk Geol Ust. 1994;69:47–51.
Google Scholar
McIntyre A, Bé AWH. Modern coccolithophoridae of the atlantic ocean—I. Placoliths and cyrtoliths. Deep Sea Res Oceanogr Abstr. 1967;14:561–97.
Article
Google Scholar
Okada H, Honjo S. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res Oceanogr Abstr. 1973;20:355–74.
Article
Google Scholar
Gibbs SJ, Shackleton NJ, Young JR. Identification of dissolution patterns in nannofossil assemblages: a high-resolution comparison of synchronous records from Ceara Rise, ODP Leg 154. Paleoceanogr Paleoclimatol. 2004;19.
Caruso F, Orecchio S, Cicero MG, Di Stefano C. Gas chromatography–mass spectrometry characterization of the varnish and glue of an ancient 18th century double bass. J Chromatogr A. 2007;1147:206–12.
Article
CAS
Google Scholar
Elert K, Herrera A, Cardell C. Pigment-binder interactions in calcium-based tempera paints. Dyes Pigm. 2018;148:236–48.
Article
CAS
Google Scholar
Karakaş F, Çelik MS. Stabilization mechanism of main paint pigments. Progr Org Coat. 2018;123:292–8.
Article
CAS
Google Scholar
Pellegrini D, Duce C, Bonaduce I, Biagi S, Ghezzi L, Colombini MP, et al. Fourier transform infrared spectroscopic study of rabbit glue/inorganic pigments mixtures in fresh and aged reference paint reconstructions. Microchem J. 2016;124:31–5.
Article
CAS
Google Scholar
Bower NW, Blanchet CJK, Epstein MS. Nondestructive determination of the age of 20th-century oil-binder ink prints using attenuated total reflection fourier transform infrared spectroscopy (ATR FT-IR): a case study with postage stamps from the Łódź Ghetto. Appl Spectrosc. 2016;70:162–73.
Article
CAS
Google Scholar
van der Werf ID, Calvano CD, Laviano R, Simonetti A, Sabbatini L. Multi-technique chemical characterisation of a 12–13th-century painted Crucifix. Microchem J. 2013;106:87–94.
Article
CAS
Google Scholar
Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E. Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res. 2010;43:715–27.
Article
CAS
Google Scholar
Tammekivi E, Vahur S, Vilbaste M, Leito I. Quantitative GC-MS analysis of artificially aged paints with variable pigment and linseed oil ratios. Molecules. 2021;26:2218.
Article
CAS
Google Scholar
Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E. Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsample. Anal Chem. 2006;78:4490–500.
Article
CAS
Google Scholar
Colombini MP, Modugno F. Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci. 2004;27:147–60.
Article
CAS
Google Scholar
Bonaduce I, Cito M, Colombini MP. The development of a gas chromatographic-mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A. 2009;1216:5931–9.
Article
CAS
Google Scholar
Lluveras A, Bonaduce I, Andreotti A, Colombini MP. GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem. 2010;82:376–86.
Article
CAS
Google Scholar
Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta. 2011;1811:648–56.
Article
CAS
Google Scholar
Dettmer-Wilde K, Engewald W, editors. Practical gas chromatography—a comprehensive reference. Berlin: Springer; 2014.
Google Scholar
Hübschmann H-J. Handbook of GC-MS: fundamentals and applications. 3rd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015.
Google Scholar
Calvano CD, van der Werf ID, Palmisano F, Sabbatini L. Revealing the composition of organic materials in polychrome works of art: the role of mass spectrometry-based techniques. Anal Bioanal Chem. 2016;408:6957–81.
Article
CAS
Google Scholar
Smoluch M, Sobczyk J, Szewczyk I, Karaszkiewicz P, Silberring J. Mass spectrometry in art conservation—with focus on paintings. Mass Spectrom Rev. 2021. https://doi.org/10.1002/mas.21767.
Article
Google Scholar
Casoli A, Musini PC, Palla G. Gas chromatographic-mass spectrometric approach to the problem of characterizing binding media in paintings. J Chromatogr A. 1996;731:237–46.
Article
CAS
Google Scholar
Dron J, Linke R, Rosenberg E, Schreiner M. Trimethylsulfonium hydroxide as derivatization reagent for the chemical investigation of drying oils in works of art by gas chromatography. J Chromatogr A. 2004;1047:111–6.
Article
CAS
Google Scholar
Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F, Doménech-Carbó A, Casas-Catalán MJ, Osete-Cortina L, et al. Identification by GC-FID and GC-MS of amino acids, fatty and bile acids in binding media used in works of art. Fresenius J Anal Chem. 2001;369:642–6.
Article
CAS
Google Scholar
Hermans JJ, Keune K, van Loon A, Iedema PD. The crystallization of metal soaps and fatty acids in oil paint model systems. Phys Chem. 2016;18:10896–905.
CAS
Google Scholar
Mills JS. The gas chromatographic examination of paint media. Part I. Fatty acid composition and identification of dried oil films. Stud Conserv. 1966;11:92–107.
CAS
Google Scholar
Manzano E, Rodriguez-Simón LR, Navas N, Checa-Moreno R, Romero-Gámez M, Capitan-Vallvey LF. Study of the GC-MS determination of the palmitic-stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study. Talanta. 2011;84:1148–54.
Article
CAS
Google Scholar
Gelzo M, Corso G, Pecce R, Arcari O, Piccioli C, Dello Russo A, et al. An enhanced procedure for the analysis of organic binders in Pompeian’s wall paintings from Insula Occidentalis. Herit Sci. 2019;7:12.
Article
Google Scholar
van den Berg JDJ, van den Berg KJ, Boon JJ. Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column GC/MS. Progr Org Coat. 2001;41:143–55.
Article
Google Scholar
Hünnig Bom M, do MonteGuerra R, Concheyro A, Fauth G. Methodologies for recovering calcareous nannofossils from bituminous claystone. Micropalaeontology. 2015;61:165–70.
Article
Google Scholar
Green OR. Extraction techniques for calcareous nannofossils. In: Green OR, editor. A manual of practical laboratory and field techniques in palaeobiology. Dordrecht: Springer; 2001. p. 366–74.
Chapter
Google Scholar
Kennedy AE, Coe AL. Development of the freeze–thaw processing technique for disaggregation of indurated mudrocks and enhanced recovery of calcareous microfossils. J Micropaleontol. 2014;33:193–203.
Article
Google Scholar
Hauser LM. An integrated microwave technique for releasing microfossils from an indurated bone bed. J Micropaleontol. 2015;35:2015–2005.
Google Scholar
Bolli HM, Saunders JB, Perch-Nielsen K, editors. Plankton Stratigraphy: Planktic Foraminifera, Calcareous Nannofossils and Calpionellids. 2nd ed. Cambridge: Cambridge University Press; 1989.
Google Scholar
Švábenická L. Calcareous nannofossils of the upper karpatian and lower badenian deposits in the carpathian foredeep, moravia (Czech Republic). Geol Carpath. 2002;53:197–210.
Google Scholar
Gallagher LT. Tertiary calcareous nannofossils from the central and southern North Sea Basins, and their biostratigraphical application. Doctoral dissertation. University of London; 1988.
Ghezzi L, Duce C, Bernazzani L, Bramanti E, Colombini MP, Tiné MR, et al. Interactions between inorganic pigments and rabbit skin glue in reference paint reconstructions. J Therm Anal Calorim. 2015;122:315–22.
Article
CAS
Google Scholar
Stover LE. Cretaceous Coccoliths and Associated Nannofossils from France and the Netherlands. Micropaleontology. 1966;12:133–67.
Article
Google Scholar
Gennaro M, Wonham JP, Gawthorpe R, Sælen G. Seismic stratigraphy of the Chalk Group in the Norwegian Central Graben, North Sea. Mar Petrol Geol. 2013;45:236–66.
Article
Google Scholar
Dessenne JL, Duffaut P. Les propriétés rhéologiques de la craie et leur influence sur le percement de galeries. La Houille Blanche. 1970;56:477–88.
Article
Google Scholar
Mills J, White R. Organic chemistry of museum objects. 2nd ed. London: Routledge; 1987.
Google Scholar
Slánský B. Technika malby Díl I., Malířský a konservační materiál. 2nd ed. Praha: Paseka; 2003.
Google Scholar
Anantha Padmanabha Setty MG. Preparation and method of study of fossil diatoms. Micropaleontology. 1966;12:511–4.
Article
Google Scholar
Michalski S. A physical model of the cleaning of oil paint. Stud Conserv. 1990;35 sup1. Preprints of the Contributions to the Brussels Congress, 3–7 September 1990: Cleaning, Retouching and Coating:85–92.
Pingitore NE, Fretzdorff SB, Seitz BP, Estrada LY, Borrego PM, Crawford GM, et al. Dissolution kinetics of CaCO3 in common laboratory solvents. SEPM JSR. 1993;63:641–5.
CAS
Google Scholar
Rathouský J, Herman V. Čisticí směs pro odstraňování hydrofobizačních ochranných povlaků na bázi organokřemičitých polymerů (Cleaning mixture for the removal of hydrophobization protective coatings). 2015.
Stoye D, Freitag W, editors. Paints, coatings and solvents. 2nd ed. Hoboken: Wiley; 1998.
Google Scholar
Fields M, Spencer N, Dudhia J, McMillan PF. Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy. Biopolymers. 2017;107:e23017.
Article
CAS
Google Scholar
Veis A, Cohen J. The degradation of collagen. II. The solubilization process in the Acid pH range. J Am Chem Soc. 1955;77:2364–8.
Article
CAS
Google Scholar
Privalov PL. Thermodynamic problems of protein structure. Annu Rev Biophys Biophys Chem. 1989;18:47–69.
Article
CAS
Google Scholar
Lee B. Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturation. Proc Natl Acad Sci USA. 1991;88:5154–8.
Article
CAS
Google Scholar
Clark DF. Effects of ultrasonic pressure on calcareous nannofossils. Geology. 1973;1:61–2.
Article
Google Scholar
Blaj T, Henderiks J. Smear and spray preparation techniques put to the test (II): reproducibility and accuracy of calcareous nannofossil assemblage counts. J Nannoplankton Res. 2007;29:92–100.
Google Scholar
Backman J, Shackleton NJ. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans. Mar Micropaleontol. 1983;8:141–70.
Article
Google Scholar
Lord AR. A stratigraphical index of calcareous nannofossils. Chichester: Ellis Horwood Ltd.; 1982.
Google Scholar
Andruleit H. A filtration technique for quantitative studies of coccoliths. Micropaleontol. 1996;42:403–6.
Article
Google Scholar
Saavedra-Pellitero M, Flores Villarejo JA, Baumann KH, Boeckel B, Sierro Sánchez FJ. Comparison of different preparation and analysis techniques for quantitative coccolith studies focusing on biogeographic patterns of species. Micropaleontology. 2011;57:139–61.
Article
Google Scholar
Negri A, Giunta S, Hilgen F, Krijgsman W, Vai GB. Calcareous nannofossil biostratigraphy of the M. del Casino section (northern Apennines, Italy) and paleoceanographic conditions at times of Late Miocene sapropel formation. Mar Micropaleontol. 1999;36:13–30.
Article
Google Scholar
Perch-Nielsen K. Eine Preparationstechnik zur Untersuchung von Nanno-plankton im Lichtmikroskop und im Elektronenmikroskop. Medd fra Dansk Geol Forening. 1967;17:129–31.
Google Scholar
Moshkovitz S. A new method for observing the same nannofossil specimens both by light microscope and scanning electron microscope and preservation of types. Israel J Earth Sci. 1974;23:145–7.
Google Scholar
Sherwood RW, Levin HL. Scanning electron and optical microscope procedure for viewing of individual Coccoliths. Tulane Stud Geol Paleontol. 1973;10:103–6.
Google Scholar
Moshkovitz S. New types of cover-slip and mounting-slide with a graticule for examination of the same small object both in light microscope and in scanning electron microscope. Micr Acta. 1978;80:161–6.
Google Scholar
Stoll HM, Ruiz Encinar J, Ignacio Garcia Alonso J, Rosenthal Y, Probert I, Klaas C. A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements. Geochem Geophys Geosyst. 2001;2.
Koch C, Young JR. A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples. J Nannoplankton Res. 2007;29:67–9.
Google Scholar
Bairbakhish AN, Bollmann J, Sprengel C, Thierstein HR. Disintegration of aggregates and coccospheres in sediment trap samples. Mar Micropaleontol. 1999;37:219–23.
Article
Google Scholar
Faimon J, Stelcl J, Kubesová S, Zimák J. Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environ Pollut. 2003;122:417–22.
Article
CAS
Google Scholar
Chairopoulou MA, Kratzer F, Gross R, Herrmann M, Teipel U. Influence of the temperature on coccolith-containing systems from Emiliania huxleyi cultivations. Chem Eng Technol. 2020;43:904–12.
Article
CAS
Google Scholar
Coto B, Martos C, Peña JL, Rodríguez R, Pastor G. Effects in the solubility of CaCO3: experimental study and model description. Fluid Phase Equilib. 2012;324:1–7.
Article
CAS
Google Scholar
Geisen M, Bollmann J, Herrle JO, Mutterlose J, Young JR, Bollmann J, et al. Calibration of the random settling technique for calculation of absolute abundances of calcareous nannoplankton. Micropaleontology. 1999;45:437–42.
Article
Google Scholar
Katz BJ. Preparation of calcareous nannofossil assemblages for chemical examination. J Paleontol. 1978;52:497–500.
Google Scholar
Chinard FP. Interactions of quaternary ammonium compounds and proteins. J Biol Chem. 1948;176:1439–47.
Article
CAS
Google Scholar
Cheng H, Chen M, Liao L, Zhiqiang L. Chemical and physical behaviour of collagen fibre in alkaline solutions. J Soc Leath Technol Chem. 2009;93:140–4.
CAS
Google Scholar
Pitthard V, Stanek S, Griesser M, Muxeneder T. Gas chromatography–mass spectrometry of binding media from early 20th century paint samples from Arnold Schönberg’s Palette. Chromatographia. 2005;62:175–82.
Article
CAS
Google Scholar
Shilling MR, Carson DM, Khanjian HP. Evaporation of fatty acids and the formation of ghost images by framed oil paintings. Western Association for Art Conservation (WAAC)—Newsletter. 1998;21.
Surowiec I, Kaml I, Kenndler E. Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect UV and conductivity detection. J Chromatogr A. 2004;1024:245–54.
Article
CAS
Google Scholar
Ohlrogge J, Thrower N, Mhaske V, Stymne S, Baxter M, Yang W, et al. PlantFAdb: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant J. 2018;96:1299–308.
Article
CAS
Google Scholar
Young JR, Bown PR, Lees JA. Nannotax3 website. Int Nannoplankton Ass. 2022. https://www.mikrotax.org/Nannotax3. Accessed 21
Apr 2022.