Kane RE, Liddicoat RT. The Biron hydrothermal synthetic emerald. Gems Gemology. 1985;21(3):156–70.
Article
Google Scholar
Bush MA, Miller RG, Norrlander AL, Bush PJ. Analytical survey of restorative resins by SEM/EDS and XRF: databases for forensic purposes. J Forensic Sci. 2008;53(2):419–25. https://doi.org/10.1111/j.1556-4029.2007.00654.x.
Article
CAS
Google Scholar
Cao Y, Linnen R, Good D, Samson I, Epstein R. The application of portable XRF and benchtop SEM-EDS to Cu-Pd exploration in the Coldwell Alkaline Complex, Ontario, Canada. Geochem Explor Environ Anal. 2016;16(3–4):193–212. https://doi.org/10.1144/geochem2015-394.
Article
CAS
Google Scholar
Orange M, Le Bourdonnec F-X, Bellot-Gurlet L, Lugliè C, Dubernet S, Bressy-Leandri C, Scheffers A, Joannes-Boyau R. On sourcing obsidian assemblages from the Mediterranean area: analytical strategies for their exhaustive geochemical characterisation. J Archaeol Sci Rep. 2017;12:834–44. https://doi.org/10.1016/j.jasrep.2016.06.002.
Article
Google Scholar
Freitas RP, Coelho FA, Felix VS, Pereira MO, de Souza MAT, Anjos MJ. Analysis of 19th century ceramic fragments excavated from Pirenopolis (Goias, Brazil) using FT-IR, Raman, XRF and SEM. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;193:432–9. https://doi.org/10.1016/j.saa.2017.12.047.
Article
CAS
Google Scholar
Smith D. Handheld X-ray fluorescence analysis of Renaissance bronzes: practical approaches to quantification and acquisition. Handheld XRF for art and archaeology. Leuven, Belgium: Leuven University Press; 2012. p. 37–74.
Google Scholar
Torpy A, MacRae C, Fazey P, Wilson N, editors. Microbeam x-ray fluorescence in an electron microprobe. In: ACEM17 Australian Conference on Electron Microscopy; 2002 4–8 Feb.; Adelaide, SA (Australia): The Australian Society For Electron Microscopy, Inc.; 2002.
Torpy A, MacRae C, Harrowfield I, Rummel P, editors. Development of a Dual Excitation X-ray/Electron Microprobe (DEXREM). Sydney, NSW: Australian Microbeam Analysis Society VI; 2001 14–16 Feb., 2001, Australia; 2001.
Janssens K, Vincze L, Rubio J, Adams F, Bernasconi G. Microscopic X-ray fluorescence analysis. Invited lecture. J Anal Atom Spectrom. 1994;9(3):151–7. https://doi.org/10.1039/JA9940900151.
Article
CAS
Google Scholar
Gao N, Ponomarev IY, Xiao Q, Gibson W, Carpenter D. Monolithic polycapillary focusing optics and their applications in microbeam x-ray fluorescence. Appl Phys Lett. 1996;69(11):1529–31. https://doi.org/10.1063/1.117994.
Article
CAS
Google Scholar
Jindong X, Yejun H, Xunliang D, Qiuili P, Yiming Y. The monolithic X-ray polycapillary lens and its application in microbeam X-ray fluorescence. J Anal At Spectrom. 1999;14(3):391–4. https://doi.org/10.1039/A806836D.
Article
CAS
Google Scholar
Bjeoumikhov A, Langhoff N, Wedell R, Beloglazov V, Lebed’Ev N, Skibina N. New generation of polycapillary lenses: manufacture and applications. X-Ray Spectrom Int J. 2003;32(3):172–8. https://doi.org/10.1002/xrs.587.
Article
CAS
Google Scholar
Witherspoon K, Cross B, Lamb R, Sjoman P. Advancements in integrated micro-XRF in the SEM. Microsc Microanal. 2009;15(S2):180–1. https://doi.org/10.1017/S1431927609098304.
Article
Google Scholar
Haschke M, Boehm S. Micro-XRF in scanning electron microscopes. Advances in imaging and electron physics, vol. 199. Cambridge, MA: Elsevier; 2017. p. 1–60. https://doi.org/10.1016/bs.aiep.2017.01.001.
Book
Google Scholar
Cross BJ, Witherspoon K. Integrated XRF in the SEM. Microsc Microanal. 2004;10(S02):104–5. https://doi.org/10.1017/S1431927604885684.
Article
Google Scholar
Sharps MC, Martinez MM, Brandl M, Lam T, Vicenzi EP. A dual beam SEM-based EDS and micro-XRF method for the analysis of large-scale Mesoamerican obsidian tablets. J Archaeol Sci Rep. 2021;35: 102781. https://doi.org/10.1016/j.jasrep.2020.102781.
Article
Google Scholar
Englund M. Broborg hillfort a research study of the vitrified wall. Arkeologerna; 2018. Contract No.: Report 2018. p. 103.
Kresten P, Ambrosiani B. Swedish vitrified forts-a reconnaissance study. Fornvännen J Swed Antiqu Res. 1992:1–17.
Sjöblom R, Hjärthner-Holdar E, Pearce CI, Weaver JL, Ogenhall E, Mc Cloy JS, Marcial J, Vicenzi EP, Schweiger MJ, Kruger AA. Assessment of the reason for the vitrification of a wall at a hillfort. The example of Broborg in Sweden. J Archaeol Sci Rep. 2022;43:103459. https://doi.org/10.1016/j.jasrep.2022.103459.
Article
Google Scholar
Kresten P, Kero L, Chyssler J. Geology of the vitrified hill-fort Broborg in Uppland, Sweden. Geologiska Föreningen i Stockholm Förhandlingar. 1993;115(1):13–24. https://doi.org/10.1080/11035899309454825.
Article
Google Scholar
Mc Cloy JS, Marcial J, Clarke JS, Ahmadzadeh M, Wolff JA, Vicenzi EP, Bollinger DL, Ogenhall E, Englund M, Pearce CI, Sjöblom R, Kruger AA. Reproduction of melting behavior for vitrified hillforts based on amphibolite, granite, and basalt lithologies. Sci Rep. 2021;11(1):1272. https://doi.org/10.1038/s41598-020-80485-w.
Article
CAS
Google Scholar
Weaver JL, Pearce CI, Sjöblom R, Mc Cloy JS, Miller M, Varga T, Arey B, Conroy M, Peeler D, Koestler R, De Preist P, Hjärthner-Holdar E, Ogenhall E, Kruger AA. Pre-Viking Swedish hillfort glass: a prospective long-term alteration analogue for vitrified nuclear waste. Int J Appl Glas Sci. 2018;9(4):540–54. https://doi.org/10.1111/ijag.12351.
Article
CAS
Google Scholar
Lagerbielke E. Aspects of the development of Swedish glass manufacturing. J Glass Stud. 2021;63:303–20.
Google Scholar
Lo Giudice A, Re A, Calusi S, Giuntini L, Massi M, Olivero P, Pratesi G, Albonico M, Conz E. Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem. 2009;395(7):2211–7.
Article
CAS
Google Scholar
Palamara E, Das P, Nicolopoulos S, Tormo Cifuentes L, Kouloumpi E, Terlixi A, Zacharias N. Towards building a Cathodoluminescence (CL) database for pigments: characterization of white pigments. Herit Sci. 2021;9(1):1–14.
Article
Google Scholar
Jarosewich E, Nelen J, Norberg JA. Reference samples for electron microprobe analysis. Geostand Newsl. 1980;4(1):43–7. https://doi.org/10.1111/j.1751-908X.1980.tb00273.x.
Article
Google Scholar
Vicenzi EP, Eggins S, Logan A, Wysoczanski R. Microbeam characterization of corning archeological reference glasses: new additions to the smithsonian microbeam standard collection. J Res Nat Inst Stand Technol. 2002;107(6):719. https://doi.org/10.6028/jres.107.058 (PMCID: PMC4863856).
Article
CAS
Google Scholar
Haschke M. Laboratory micro-X-ray fluorescence spectroscopy: Instrumentation and Applications. Ertl G, Lüth H, Mills DL, editors. Heidelberg, Germany: Springer; 2014. 978-3-319-0-4863-5
Ritchie NW. Spectrum simulation in DTSA-II. Microsc Microanal. 2009;15(5):454–68. https://doi.org/10.1017/S1431927609990407.
Article
CAS
Google Scholar
Wolff T. Information depth—XRF Check Bruker.com: Bruker; 2020 [Available from: https://xrfcheck.bruker.com/InfoDepth.
Parish C, Brewer L. Multivariate statistics-based segmentation methods for quantification of X-ray spectrum images. Ultramicroscopy. 2010;110(2):134–43.
Article
CAS
Google Scholar
Parish CM. Multivariate statistics applications in scanning transmission electron microscopy X-ray spectrum imaging. Advances in imaging and electron physics, vol. 168. Elsevier; 2011. p. 249–95.
Google Scholar
Titchmarsh J. EDX spectrum modelling and multivariate analysis of sub-nanometer segregation. Micron. 1999;30(2):159–71.
Article
CAS
Google Scholar
Titchmarsh J, Dumbill S. Multivariate statistical analysis of FEG-STEM EDX spectra. J Microsc. 1996;184(3):195–207.
Article
CAS
Google Scholar
Trebbia P, Bonnet N. EELS elemental mapping with unconventional methods I. Theoretical basis: image analysis with multivariate statistics and entropy concepts. Ultramicroscopy. 1990;34(3):165–78.
Article
CAS
Google Scholar
Trebbia P, Mory C. EELS elemental mapping with unconventional methods II. Applications to biological specimens. Ultramicroscopy. 1990;34(3):179–203.
Article
CAS
Google Scholar
Kotula PG, Keenan MR. Application of multivariate statistical analysis to STEM X-ray spectral images: interfacial analysis in microelectronics. Microsc Microanal. 2006;12(6):538–44.
Article
CAS
Google Scholar
Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics. 1979;9:62–6.
Article
Google Scholar
Friend CR, Kirby JE, Charnley NR, Dye J. New field, analytical data and melting temperature determinations from three vitrified forts in Lochaber, Western Highlands, Scotland. J Archaeol Sci Rep. 2016;10:237–52. https://doi.org/10.1016/j.jasrep.2016.09.015.
Article
Google Scholar
Leeman WP, MacRae CM, Wilson NC, Torpy A, Lee C-TA, Student JJ, Thomas JB, Vicenzi EP. A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz. Microsc Microanal. 2012;18(6):1322–41. https://doi.org/10.1017/s1431927612013426.
Article
CAS
Google Scholar
Macrae CM, Wilson NC, Johnson SA, Phillips PL, Otsuki M. Hyperspectral mapping—combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Tech. 2005;67(5):271–7. https://doi.org/10.1002/jemt.20205.
Article
Google Scholar
Ogenhall E. Amphibolitic ROCKS NEAR BROBORG, Uppland. Knivsta, Sweden; 2015. Contract No.: Dnr 5.1.1-01422-2015.
Giordano D, Russell JK, Dingwell DB. Viscosity of magmatic liquids: a model. Earth Planet Sci Lett. 2008;271(1–4):123–34. https://doi.org/10.1016/j.epsl.2008.03.038.
Article
CAS
Google Scholar
Yanniotis S., Skaltsi S. and Karaburnioti S. (2006) Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering 72, 372-377.
Article
Google Scholar
Singh LG, Vallinayagam G. Petrological and geochemical constraints in the origin and associated mineralization of A-type granite suite of the Dhiran Area, Northwestern Peninsular India. Geosciences. 2012;2(4):66–80.
Google Scholar
Jackson MD, Landis EN, Brune PF, Vitti M, Chen H, Li Q, Kunz M, Wenk H-R, Monteiro PJ, Ingraffea AR. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc Natl Acad Sci. 2014;111(52):18484–9.
Article
CAS
Google Scholar
Seymour LM, Tamura N, Jackson MD, Masic A. Reactive binder and aggregate interfacial zones in the mortar of Tomb of Caecilia Metella concrete, 1C BCE, Rome. J Am Ceram Soc. 2021. https://doi.org/10.1111/jace.18133.
Article
Google Scholar
Rudnick RL, Gao S. The Crust. In: Holland HD, Turekian KK, editors. Treatise on geochemistry. Elsevier; 2003. p. 1–64.
Google Scholar
Rudnick R, Gao S. 4.1 - Composition of the Continental Crust. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry, Volume 4. 2nd ed. Netherlands: Elsevier, Amsterdam; 2014. p. 1–51.
Google Scholar